import random import numpy as np from elevenlabs import voices, generate, set_api_key, UnauthenticatedRateLimitError, save import huggingface_hub from huggingface_hub import Repository import os from huggingface_hub import HfApi import gradio as gr from datasets import load_dataset DATASET_REPO_URL = "https://huggingface.co/datasets/laxsvips/audiofiles" DATA_FILENAME = "audio.mp3" DATA_FILE = os.path.join("data", DATA_FILENAME) api = HfApi() HF_TOKEN = os.environ.get("HF_TOKEN") repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN ) def pad_buffer(audio): # Pad buffer to multiple of 2 bytes buffer_size = len(audio) element_size = np.dtype(np.int16).itemsize if buffer_size % element_size != 0: audio = audio + b'\0' * (element_size - (buffer_size % element_size)) return audio def generate_voice(text): try: audio = generate( text, voice="Arnold", model="eleven_monolingual_v1" ) save(audio,'data/audio.mp3') # save(audio,'audio.wav') # commit_url = repo.push_to_hub() # dataset = load_dataset("audiofolder", data_dir="./data") audio_dataset = Dataset.from_dict({"audio": ["data/audio.mp3"]}).cast_column("audio", Audio()) commit_url = audio_dataset.push_to_hub("laxsvips/audiofiles") return commit_url # return_url = "failure" # if commit_url: # return_url = DATASET_REPO_URL+"/"+ DATA_FILENAME # return (return_url) # return (44100, np.frombuffer(pad_buffer(audio), dtype=np.int16)) except UnauthenticatedRateLimitError as e: raise gr.Error("Thanks for trying out ElevenLabs TTS! You've reached the free tier limit. Please provide an API key to continue.") except Exception as e: raise gr.Error(e)