File size: 8,425 Bytes
a8cb0a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
from .RajatsMinecraftLibrary.audio import MyAudio, AudioManipulator
import librosa
import configparser
import json
import pickle as pkl
import argparse
from collections import deque
import numpy as np
import soundfile as sf
import os
config = configparser.ConfigParser()
script_dir = os.path.dirname(os.path.abspath(__file__))
config.read(os.path.join(script_dir, 'config.ini'))
def preProcess(
mainAudioValues,
sr,
instruments_dict,
scaling_dict,
initialBestMatchesLength,
simThresh,
binLength,
sounds_file_path,
amplitudeMode,
):
startTime = 0
result = []
resAudioValues = np.zeros(len(mainAudioValues))
# simValues = []
while startTime < 1000 * len(mainAudioValues) / sr:
# print(startTime, end=",")
resAudio = MyAudio(
[{"fileName": "resFile", "pitchShift": 0, "ASF": 1}],
AudioManipulator.splitAudioValues(
resAudioValues, sr, startTime, startTime + binLength
),
)
mainAudio = MyAudio(
[{"fileName": "targetFile", "pitchShift": 0, "ASF": 1}],
AudioManipulator.splitAudioValues(
mainAudioValues, sr, startTime, startTime + binLength
),
)
########################### Finding initial best matches ########################
initialBestMatches = []
for instrument in instruments_dict:
rng = instruments_dict[instrument]
audioValues, sr = librosa.load(os.path.join(script_dir, "Instruments/" + instrument))
audioValues *= scaling_dict[instrument]
for pitchShift in range(rng[0], rng[1] + 1):
asf = AudioManipulator.calculateAmplitudeShiftOfAudioValues(
mainAudio.audioValues, AudioManipulator.shiftPitchOfAudioValues(
audioValues, sr, pitchShift
), amplitudeMode
)
pitchShiftedAudio = MyAudio(
[{"instrument": instrument, "pitchShift": pitchShift, "ASF": asf}],
AudioManipulator.shiftPitchOfAudioValues(
audioValues, sr, pitchShift
)
* asf,
)
combinedAudio = MyAudio.combineTwoAudios(resAudio, pitchShiftedAudio)
sim = MyAudio.compareTwoFFTAudios(
MyAudio.changeAudioToFFT(mainAudio),
MyAudio.changeAudioToFFT(combinedAudio),
)
initialBestMatches.append(
{
"similarity": round(sim, 2),
"instrument": instrument,
"pitchShift": pitchShift,
"ASF": asf,
}
)
initialBestMatches = sorted(
initialBestMatches, key=lambda x: x["similarity"], reverse=True
)
###################### Making all combinations and finding there similarities ######################
combinationsQueue = deque()
ogAudios = []
mxIndex = initialBestMatchesLength
for idx, note in enumerate(initialBestMatches[:initialBestMatchesLength]):
audioValues, _ = librosa.load(os.path.join(script_dir, f'Instruments/{note["instrument"]}'))
audioValues *= scaling_dict[note["instrument"]]
audio = MyAudio(
[
{
"instrument": note["instrument"],
"pitchShift": note["pitchShift"],
"ASF": note["ASF"],
}
],
AudioManipulator.shiftPitchOfAudioValues(
audioValues, sr, note["pitchShift"]
)
* note["ASF"],
)
ogAudios.append(audio)
combinationsQueue.append({"idx": idx, "audio": audio})
combinationSimilarities = []
while len(combinationsQueue):
combination = combinationsQueue.popleft()
# print("COM", combination[1].details)
sim = MyAudio.compareTwoFFTAudios(
MyAudio.changeAudioToFFT(mainAudio),
MyAudio.changeAudioToFFT(
MyAudio.combineTwoAudios(resAudio, combination["audio"])
),
)
combinationSimilarities.append(
{
"similarity": round(sim, 2),
"combination": combination["audio"].details,
}
)
for combinableAudioId in range(combination["idx"] + 1, mxIndex):
combinationsQueue.append(
{
"idx": combinableAudioId,
"audio": MyAudio.combineTwoAudios(
combination["audio"], ogAudios[combinableAudioId]
),
}
)
combinationSimilarities = sorted(
combinationSimilarities, key=lambda x: x["similarity"], reverse=True
)
############################# Making resulting audio from optimum combination #############################
bestMatch = combinationSimilarities[0]
result.append((startTime, bestMatch))
if bestMatch["similarity"] >= simThresh:
for instrumentDetails in bestMatch["combination"]:
instrumentAudioValues, _ = librosa.load(
os.path.join(script_dir, f'Instruments/{instrumentDetails["instrument"]}')
)
instrumentAudioValues *= scaling_dict[instrumentDetails["instrument"]]
instrumentAudioValues = (
AudioManipulator.shiftPitchOfAudioValues(
instrumentAudioValues, sr, instrumentDetails["pitchShift"]
)
* instrumentDetails["ASF"]
)
resAudioValues = AudioManipulator.addAudioValuesInDuration(
resAudioValues, instrumentAudioValues, startTime, sr
)
# print(bestMatch)
# simValues.append(bestMatch["similarity"])
if startTime % 1000 == 0:
# AudioManipulator.drawAudioValues(mainAudioValues, sr)
# AudioManipulator.drawAudioValues(resAudioValues, sr)
sf.write(
sounds_file_path, resAudioValues, sr
)
startTime += binLength
# for simValue in sorted(simValues, reverse=True):
# print(int(simValue * 100), end=',')
# print()
return result
# if __name__ == "__main__":
# parser = argparse.ArgumentParser(description="Music analyzer for minecraft note blocks")
# parser.add_argument("-m", "--mode", help="Specify the mode. <Mean> or <Max>")
# parser.add_argument("-f", "--file", help="Specify the file path for processing")
# parser.add_argument("-o", "--output", help="Specify the result path for saving")
# args = parser.parse_args()
# musicFilePath = args.file
# outputFolderPath = args.output
# amplitudeMode = args.mode
# if musicFilePath and amplitudeMode:
# sr = int(config["AudioSettings"]["sr"])
# instruments_dict = json.loads(config["AudioSettings"]["instruments_dict"])
# scaling_dict = json.loads(config["AudioSettings"]["scaling_dict"])
# initialBestMatchesLength = int(config["AudioSettings"]["initialBestMatchesLength"])
# binLength = int(config["AudioSettings"]["binLength"])
# simThresh = float(config["AudioSettings"]["simThresh"])
# mainAudioValues, _ = librosa.load(f"{musicFilePath}")
# sounds_file_path = os.path.join(outputFolderPath, "uEim193#3ka.mp3"),
# preProcessingResults = preProcess(
# mainAudioValues,
# sr,
# instruments_dict,
# scaling_dict,
# initialBestMatchesLength,
# simThresh,
# binLength,
# sounds_file_path,
# amplitudeMode,
# )
# with open(os.path.join(outputFolderPath, f"pkl/{musicFilePath.split("/")[-1].split(".")[0]}{amplitudeMode}.pkl"), "wb") as f:
# pkl.dump(preProcessingResults, f)
# else:
# print("Usage - python musicAnalyzer.py -f <file_name_with_extension> -o <output_folders_path> -m <mode - Mean or Max>")
|