File size: 8,425 Bytes
a8cb0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from .RajatsMinecraftLibrary.audio import MyAudio, AudioManipulator
import librosa
import configparser
import json
import pickle as pkl
import argparse
from collections import deque
import numpy as np
import soundfile as sf
import os

config = configparser.ConfigParser()
script_dir = os.path.dirname(os.path.abspath(__file__))

config.read(os.path.join(script_dir, 'config.ini'))


def preProcess(
    mainAudioValues,
    sr,
    instruments_dict,
    scaling_dict,
    initialBestMatchesLength,
    simThresh,
    binLength,
    sounds_file_path,
    amplitudeMode,
):
    startTime = 0
    result = []
    resAudioValues = np.zeros(len(mainAudioValues))
    # simValues = []
    while startTime < 1000 * len(mainAudioValues) / sr:
        # print(startTime, end=",")
        resAudio = MyAudio(
            [{"fileName": "resFile", "pitchShift": 0, "ASF": 1}],
            AudioManipulator.splitAudioValues(
                resAudioValues, sr, startTime, startTime + binLength
            ),
        )
        mainAudio = MyAudio(
            [{"fileName": "targetFile", "pitchShift": 0, "ASF": 1}],
            AudioManipulator.splitAudioValues(
                mainAudioValues, sr, startTime, startTime + binLength
            ),
        )

        ########################### Finding initial best matches ########################
        initialBestMatches = []
        for instrument in instruments_dict:
            rng = instruments_dict[instrument]
            audioValues, sr = librosa.load(os.path.join(script_dir, "Instruments/" + instrument))
            audioValues *= scaling_dict[instrument]
            for pitchShift in range(rng[0], rng[1] + 1):
                asf = AudioManipulator.calculateAmplitudeShiftOfAudioValues(
                    mainAudio.audioValues, AudioManipulator.shiftPitchOfAudioValues(
                        audioValues, sr, pitchShift
                    ), amplitudeMode
                )
                pitchShiftedAudio = MyAudio(
                    [{"instrument": instrument, "pitchShift": pitchShift, "ASF": asf}],
                    AudioManipulator.shiftPitchOfAudioValues(
                        audioValues, sr, pitchShift
                    )
                    * asf,
                )
                combinedAudio = MyAudio.combineTwoAudios(resAudio, pitchShiftedAudio)
                sim = MyAudio.compareTwoFFTAudios(
                    MyAudio.changeAudioToFFT(mainAudio),
                    MyAudio.changeAudioToFFT(combinedAudio),
                )
                initialBestMatches.append(
                    {
                        "similarity": round(sim, 2),
                        "instrument": instrument,
                        "pitchShift": pitchShift,
                        "ASF": asf,
                    }
                )
        initialBestMatches = sorted(
            initialBestMatches, key=lambda x: x["similarity"], reverse=True
        )

        ###################### Making all combinations and finding there similarities ######################
        combinationsQueue = deque()
        ogAudios = []
        mxIndex = initialBestMatchesLength
        for idx, note in enumerate(initialBestMatches[:initialBestMatchesLength]):
            audioValues, _ = librosa.load(os.path.join(script_dir, f'Instruments/{note["instrument"]}'))
            audioValues *= scaling_dict[note["instrument"]]
            audio = MyAudio(
                [
                    {
                        "instrument": note["instrument"],
                        "pitchShift": note["pitchShift"],
                        "ASF": note["ASF"],
                    }
                ],
                AudioManipulator.shiftPitchOfAudioValues(
                    audioValues, sr, note["pitchShift"]
                )
                * note["ASF"],
            )

            ogAudios.append(audio)
            combinationsQueue.append({"idx": idx, "audio": audio})
        combinationSimilarities = []
        while len(combinationsQueue):
            combination = combinationsQueue.popleft()
            # print("COM", combination[1].details)
            sim = MyAudio.compareTwoFFTAudios(
                MyAudio.changeAudioToFFT(mainAudio),
                MyAudio.changeAudioToFFT(
                    MyAudio.combineTwoAudios(resAudio, combination["audio"])
                ),
            )
            combinationSimilarities.append(
                {
                    "similarity": round(sim, 2),
                    "combination": combination["audio"].details,
                }
            )
            for combinableAudioId in range(combination["idx"] + 1, mxIndex):
                combinationsQueue.append(
                    {
                        "idx": combinableAudioId,
                        "audio": MyAudio.combineTwoAudios(
                            combination["audio"], ogAudios[combinableAudioId]
                        ),
                    }
                )
        combinationSimilarities = sorted(
            combinationSimilarities, key=lambda x: x["similarity"], reverse=True
        )

        ############################# Making resulting audio from optimum combination #############################
        bestMatch = combinationSimilarities[0]
        result.append((startTime, bestMatch))
        if bestMatch["similarity"] >= simThresh:
            for instrumentDetails in bestMatch["combination"]:
                instrumentAudioValues, _ = librosa.load(
                    os.path.join(script_dir, f'Instruments/{instrumentDetails["instrument"]}')
                )
                instrumentAudioValues *= scaling_dict[instrumentDetails["instrument"]]

                instrumentAudioValues = (
                    AudioManipulator.shiftPitchOfAudioValues(
                        instrumentAudioValues, sr, instrumentDetails["pitchShift"]
                    )
                    * instrumentDetails["ASF"]
                )
                resAudioValues = AudioManipulator.addAudioValuesInDuration(
                    resAudioValues, instrumentAudioValues, startTime, sr
                )
        # print(bestMatch)
        # simValues.append(bestMatch["similarity"])

        if startTime % 1000 == 0:
            # AudioManipulator.drawAudioValues(mainAudioValues, sr)
            # AudioManipulator.drawAudioValues(resAudioValues, sr)
            sf.write(
                sounds_file_path, resAudioValues, sr
            )
        startTime += binLength

    # for simValue in sorted(simValues, reverse=True):
    #     print(int(simValue * 100), end=',')
    # print()
    return result


# if __name__ == "__main__":
#     parser = argparse.ArgumentParser(description="Music analyzer for minecraft note blocks")
#     parser.add_argument("-m", "--mode", help="Specify the mode. <Mean> or <Max>")
#     parser.add_argument("-f", "--file", help="Specify the file path for processing")
#     parser.add_argument("-o", "--output", help="Specify the result path for saving")
#     args = parser.parse_args()
#     musicFilePath = args.file
#     outputFolderPath = args.output
#     amplitudeMode = args.mode

#     if musicFilePath and amplitudeMode:
#         sr = int(config["AudioSettings"]["sr"])
#         instruments_dict = json.loads(config["AudioSettings"]["instruments_dict"])
#         scaling_dict = json.loads(config["AudioSettings"]["scaling_dict"])
#         initialBestMatchesLength = int(config["AudioSettings"]["initialBestMatchesLength"])
#         binLength = int(config["AudioSettings"]["binLength"])
#         simThresh = float(config["AudioSettings"]["simThresh"])
#         mainAudioValues, _ = librosa.load(f"{musicFilePath}")
#         sounds_file_path = os.path.join(outputFolderPath, "uEim193#3ka.mp3"),
#         preProcessingResults = preProcess(
#             mainAudioValues,
#             sr,
#             instruments_dict,
#             scaling_dict,
#             initialBestMatchesLength,
#             simThresh,
#             binLength,
#             sounds_file_path,
#             amplitudeMode,
#         )
#         with open(os.path.join(outputFolderPath, f"pkl/{musicFilePath.split("/")[-1].split(".")[0]}{amplitudeMode}.pkl"), "wb") as f:
#             pkl.dump(preProcessingResults, f)
#     else:
#         print("Usage - python musicAnalyzer.py -f <file_name_with_extension> -o <output_folders_path> -m <mode - Mean or Max>")