File size: 4,937 Bytes
a8cb0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from MusicAnalyzer.musicAnalyzer import preProcess
from MusicAnalyzer.commandGenerator import generateCommands
import os
import multiprocessing as mp
import pickle as pkl
import numpy as np
import soundfile as sf
import librosa

def preProcess_wrapper(params):
    (
        id,
        audio_part,
        sr,
        instruments_dict,
        scaling_dict,
        initialBestMatchesLength,
        simThresh,
        binLength,
        audio_id_dir_path,
        amplitudeMode,
    ) = params

    return id, preProcess(
        audio_part,
        sr,
        instruments_dict,
        scaling_dict,
        initialBestMatchesLength,
        simThresh,
        binLength,
        audio_id_dir_path,
        amplitudeMode,
    )


def combine_parallel_processing_results(results):
    out = []
    ct = 0
    for data in results:
        infos = data[1]
        for info in infos:
            out.append((ct, info[1]))
            ct += 100
    return out


def combine_results_sounds_files(sounds_folder_path, results_file_name):
    combined_audio = np.array([])
    audio_files_name = []
    for file_name in os.listdir(sounds_folder_path):
        if file_name[: len(results_file_name)] == results_file_name:
            audio_files_name.append(file_name)

    sr = 0
    audio_files_name = sorted(audio_files_name)
    for audio_file_name in audio_files_name:
        audio_file_path = os.path.join(sounds_folder_path, audio_file_name)
        audio, sr = librosa.load(audio_file_path, sr=None)
        combined_audio = np.concatenate((combined_audio, audio))
        os.remove(audio_file_path)
    results_file_path = os.path.join(sounds_folder_path, results_file_name + ".mp3")
    sf.write(results_file_path, combined_audio, sr, format="MP3")
    return combined_audio, sr


def call_file_processing_logic_parallely(
    mainAudioValues,
    sr,
    instruments_dict,
    scaling_dict,
    initialBestMatchesLength,
    simThresh,
    binLength,
    audio_id_dir_path,
    amplitudeMode,
    parallel_processes_count
):
    split_size = len(mainAudioValues) // parallel_processes_count
    audio_parts = [
        mainAudioValues[i * split_size : (i + 1) * split_size]
        for i in range(parallel_processes_count)
    ]
    audio_parts[-1] = mainAudioValues[(parallel_processes_count - 1) * split_size :]
    params_list = [
        (
            i,
            audio_parts[i],
            sr,
            instruments_dict,
            scaling_dict,
            initialBestMatchesLength,
            simThresh,
            binLength,
            os.path.join(audio_id_dir_path, f"processed-{amplitudeMode}-{i}.mp3"),
            amplitudeMode,
        )
        for i in range(parallel_processes_count)
    ]
    with mp.Pool(processes=parallel_processes_count) as pool:
        results = pool.map(preProcess_wrapper, params_list)
    results = combine_parallel_processing_results(results)

    if os.path.exists(
        os.path.join(audio_id_dir_path, f"processed-{amplitudeMode}.mp3")
    ):
        os.remove(os.path.join(audio_id_dir_path, f"processed-{amplitudeMode}.mp3"))
    processed_audio, sr = combine_results_sounds_files(
        audio_id_dir_path, f"processed-{amplitudeMode}"
    )

    with open(
        os.path.join(audio_id_dir_path, f"result-{amplitudeMode}.pkl"), "wb"
    ) as f:
        pkl.dump(results, f)
    return processed_audio, sr


def convert_to_serializable(obj):
    if isinstance(obj, dict):
        return {k: convert_to_serializable(v) for k, v in obj.items()}
    elif isinstance(obj, list):
        return [convert_to_serializable(i) for i in obj]
    elif isinstance(obj, tuple):
        return tuple(convert_to_serializable(i) for i in obj)
    elif isinstance(obj, np.ndarray):
        return list(convert_to_serializable(i) for i in obj)
    elif isinstance(obj, np.float32):
        return float(obj)
    else:
        return obj


# # def create_zip_from_audios(sounds_folder_path):
# #     import io
# #     import zipfile
# #     zip_buffer = io.BytesIO()
# #     with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zipf:
# #         for filename in os.listdir(sounds_folder_path):
# #             audio_id_dir_path = os.path.join(sounds_folder_path, filename)
# #             zipf.write(audio_id_dir_path, os.path.basename(audio_id_dir_path))

# #     zip_buffer.seek(0)
# #     return zip_buffer


def call_command_generator(
    data,
    music_box_dict,
    amplitude_dict,
    hearable_range,
    one_hundred_milli_horizontal_gap,
    starting_coordinates,
    one_floor_vertical_gap,
    instant_repeater_zs,
    pitch_mapping_shift,
    sim_thresh,
):
    return generateCommands(
        data,
        music_box_dict,
        amplitude_dict,
        hearable_range,
        one_hundred_milli_horizontal_gap,
        starting_coordinates,
        one_floor_vertical_gap,
        instant_repeater_zs,
        pitch_mapping_shift,
        sim_thresh,
    )