# from rajatsLibrary.audio import AudioManipulator # import librosa # import matplotlib.pyplot as plt # import numpy as np # testAudio, _ = librosa.load('Base sounds correct.m4a') # print(len(testAudio)) # # testAudio = testAudio[:6000] # # audios = [] # # for i in range(24): # # audios.extend(AudioManipulator.shiftPitchOfAudioValues(testAudio, _, i)) # # cleanAudio = [] # # noiceOnce = testAudio[:20000] # # mxNoice = max(abs(noiceOnce)) # # for audioPoint in testAudio: # # if(abs(audioPoint) > mxNoice): # # cleanAudio.append(audioPoint) # # else: # # cleanAudio.append(0) # # cleanAudio = cleanAudio[20000:] # # cleanAudio = cleanAudio[:-20000] # # noice = [] # # while len(noice) < len(testAudio): # # noice.extend(noiceOnce) # # print(len(noice)) # # testAudio = testAudio - noice[:len(testAudio)] # plt.plot(testAudio) # # plt.xticks(np.arange(0, len(testAudio)+1, 16000.0)) # plt.grid() # plt.show() # import os # import librosa # import matplotlib.pyplot as plt # audios = [] # instruments = os.listdir('Instruments copy') # instruments = sorted(instruments) # instruments1 = instruments[:7] # instruments2 = instruments[7:] # instruments2.extend(instruments1) # instruments = instruments2 # print(instruments) # scaling_factors = [0.92, 1.94, 3.16, 1.41, 0.633, 0.775, 3.954, 1.712, 0.861, 1.327, 3.768, 1.013, 2.307, 0.645, 10.482, 1.255] # i = 0 # for instrument in instruments: # audioValues, _ = librosa.load('Instruments copy/' + instrument) # audioValues = audioValues * scaling_factors[i] # audios.extend(audioValues) # audios.extend([0] * 10000) # i+=1 # plt.plot(audios) # plt.grid() # plt.show()