demo / src /interfaces /fen_feature_interface.py
Xmaster6y's picture
better demo
3b6ef01 unverified
raw
history blame
5.4 kB
"""
Gradio interface for plotting policy.
"""
import chess
import gradio as gr
import uuid
import torch
from lczerolens.encodings import encode_move
from src import constants, global_variables, visualisation
def compute_features_fn(
features,
model_output,
file_id,
root_fen,
traj_fen,
feature_index
):
model_output, pixel_acts, sae_output = global_variables.generator.generate(
root_fen=root_fen,
traj_fen=traj_fen
)
features = sae_output["features"]
x_hat = sae_output["x_hat"]
first_output = render_feature_index(
features,
model_output,
file_id,
traj_fen,
feature_index
)
half_a_dim = constants.ACTIVATION_DIM // 2
half_f_dim = constants.DICTIONARY_SIZE // 2
pixel_f_avg = features.mean(dim=0)
pixel_f_active = (features > 0).float().mean(dim=0)
pixel_p_avg = features.mean(dim=1)
pixel_p_active = (features > 0).float().mean(dim=1)
board = chess.Board(traj_fen)
if board.turn:
most_avg_pixels = pixel_p_avg.topk(5).indices.tolist()
most_active_pixels = pixel_p_active.topk(5).indices.tolist()
else:
most_avg_pixels = pixel_p_avg.view(8,8).flip(0).view(64).topk(5).indices.tolist()
most_active_pixels = pixel_p_active.view(8,8).flip(0).view(64).topk(5).indices.tolist()
info = f"Root WDL: {model_output['wdl'][0]}\n"
info += f"Traj WDL: {model_output['wdl'][1]}\n"
info += f"MSE loss: {torch.nn.functional.mse_loss(x_hat, pixel_acts, reduction='none').sum(dim=1).mean()}\n"
info += f"MSE loss (root): {torch.nn.functional.mse_loss(x_hat[:,:half_a_dim], pixel_acts[:,:half_a_dim], reduction='none').sum(dim=1).mean()}\n"
info += f"MSE loss (traj): {torch.nn.functional.mse_loss(x_hat[:,half_a_dim:], pixel_acts[:,half_a_dim:], reduction='none').sum(dim=1).mean()}\n"
info += f"L0 loss: {(features>0).sum(dim=1).float().mean()}\n"
info += f"L0 loss (c): {(features[:,:half_f_dim]>0).sum(dim=1).float().mean()}\n"
info += f"L0 loss (d): {(features[:,half_f_dim:]>0).sum(dim=1).float().mean()}\n"
info += f"Most active features (avg): {pixel_f_avg.topk(5).indices.tolist()}\n"
info += f"Most active features (active): {pixel_f_active.topk(5).indices.tolist()}\n"
info += f"Most active pixels (avg): {[chess.SQUARE_NAMES[p] for p in most_avg_pixels]}\n"
info += f"Most active pixels (active): {[chess.SQUARE_NAMES[p] for p in most_active_pixels]}"
return *first_output, info
def render_feature_index(
features,
model_output,
file_id,
traj_fen,
feature_index
):
if file_id is None:
file_id = str(uuid.uuid4())
board = chess.Board(traj_fen)
pixel_features = features[:,feature_index]
if board.turn:
heatmap = pixel_features.view(64)
else:
heatmap = pixel_features.view(8,8).flip(0).view(64)
best_legal_logit = None
best_legal_move = None
for move in board.legal_moves:
move_index = encode_move(move, (board.turn, not board.turn))
logit = model_output["policy"][1,move_index].item()
if best_legal_logit is None:
best_legal_logit = logit
else:
best_legal_move = move
svg_board, fig = visualisation.render_heatmap(
board,
heatmap,
arrows=[(best_legal_move.from_square, best_legal_move.to_square)],
)
with open(f"{constants.FIGURES_FOLER}/{file_id}.svg", "w") as f:
f.write(svg_board)
return (
features,
model_output,
file_id,
f"{constants.FIGURES_FOLER}/{file_id}.svg",
fig
)
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
root_fen = gr.Textbox(
label="Root FEN",
lines=1,
max_lines=1,
value=chess.STARTING_FEN,
)
traj_fen = gr.Textbox(
label="Trajectory FEN",
lines=1,
max_lines=1,
value="rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1",
)
compute_features = gr.Button("Compute features")
with gr.Group():
with gr.Row():
feature_index = gr.Slider(
label="Feature index",
minimum=0,
maximum=constants.DICTIONARY_SIZE-1,
step=1,
value=0,
)
with gr.Group():
with gr.Row():
info = gr.Textbox(label="Info", lines=1, max_lines=20, value="")
with gr.Row():
colorbar = gr.Plot(label="Colorbar")
with gr.Column():
board_image = gr.Image(label="Board")
features = gr.State(None)
model_output = gr.State(None)
file_id = gr.State(None)
compute_features.click(
compute_features_fn,
inputs=[features, model_output, file_id, root_fen, traj_fen, feature_index],
outputs=[features, model_output, file_id, board_image, colorbar, info],
)
feature_index.change(
render_feature_index,
inputs=[features, model_output, file_id, traj_fen, feature_index],
outputs=[features, model_output, file_id, board_image, colorbar],
)