demo / src /interfaces /game_feature_interface.py
Xmaster6y's picture
multi lines
6d92394 unverified
raw
history blame
10.2 kB
"""
Gradio interface for plotting policy.
"""
import chess
import gradio as gr
import uuid
import torch
from lczerolens.encodings import encode_move
from src import constants, global_variables, visualisation
def compute_features_fn(
features,
model_output,
file_id,
root_idx,
traj_idx,
start_fen,
move_seq,
feature_index
):
error_return = [features, model_output, file_id, root_idx, traj_idx] + [None] * 5
root_board = None
traj_board = None
try:
board = chess.Board(start_fen)
except ValueError:
board = chess.Board()
gr.Warning("Invalid FEN, using starting position.")
return error_return
i = 0
if root_idx == 0:
root_board = board.copy()
if traj_idx == 0:
traj_board = board.copy()
if move_seq:
try:
if move_seq.startswith("1."):
for move in move_seq.split():
if root_board is not None and traj_board is not None:
break
if move.endswith("."):
continue
board.push_san(move)
i += 1
if i == root_idx:
root_board = board.copy()
if i == traj_idx:
traj_board = board.copy()
else:
for move in move_seq.split():
if root_board is not None and traj_board is not None:
break
board.push_uci(move)
i += 1
if i == root_idx:
root_board = board.copy()
if i == traj_idx:
traj_board = board.copy()
except ValueError:
gr.Warning(f"Invalid move {move}.")
return error_return
if root_board is None or traj_board is None:
gr.Warning("Invalid move sequence.")
return error_return
model_output, pixel_acts, sae_output = global_variables.generator.generate(
root_board=root_board,
traj_board=traj_board
)
current_root_fen = root_board.fen()
current_traj_fen = traj_board.fen()
features = sae_output["features"]
x_hat = sae_output["x_hat"]
first_output = render_feature_index(
features,
model_output,
file_id,
root_idx,
traj_idx,
current_traj_fen,
feature_index
)
half_a_dim = constants.ACTIVATION_DIM // 2
half_f_dim = constants.DICTIONARY_SIZE // 2
pixel_f_avg = features.mean(dim=0)
pixel_f_active = (features > 0).float().mean(dim=0)
pixel_p_avg = features.mean(dim=1)
pixel_p_active = (features > 0).float().mean(dim=1)
if board.turn:
most_avg_pixels = pixel_p_avg.topk(5).indices.tolist()
most_active_pixels = pixel_p_active.topk(5).indices.tolist()
else:
most_avg_pixels = pixel_p_avg.view(8,8).flip(0).view(64).topk(5).indices.tolist()
most_active_pixels = pixel_p_active.view(8,8).flip(0).view(64).topk(5).indices.tolist()
info = f"Root WDL: {model_output['wdl'][0]}\n"
info += f"Traj WDL: {model_output['wdl'][1]}\n"
info += f"MSE loss: {torch.nn.functional.mse_loss(x_hat, pixel_acts, reduction='none').sum(dim=1).mean()}\n"
info += f"MSE loss (root): {torch.nn.functional.mse_loss(x_hat[:,:half_a_dim], pixel_acts[:,:half_a_dim], reduction='none').sum(dim=1).mean()}\n"
info += f"MSE loss (traj): {torch.nn.functional.mse_loss(x_hat[:,half_a_dim:], pixel_acts[:,half_a_dim:], reduction='none').sum(dim=1).mean()}\n"
info += f"L0 loss: {(features>0).sum(dim=1).float().mean()}\n"
info += f"L0 loss (c): {(features[:,:half_f_dim]>0).sum(dim=1).float().mean()}\n"
info += f"L0 loss (d): {(features[:,half_f_dim:]>0).sum(dim=1).float().mean()}\n"
info += f"Most active features (avg): {pixel_f_avg.topk(5).indices.tolist()}\n"
info += f"Most active features (active): {pixel_f_active.topk(5).indices.tolist()}\n"
info += f"Most active pixels (avg): {[chess.SQUARE_NAMES[p] for p in most_avg_pixels]}\n"
info += f"Most active pixels (active): {[chess.SQUARE_NAMES[p] for p in most_active_pixels]}"
return *first_output, current_root_fen, current_traj_fen, info
def render_feature_index(
features,
model_output,
file_id,
root_idx,
traj_idx,
traj_fen,
feature_index,
):
if file_id is None:
file_id = str(uuid.uuid4())
board = chess.Board(traj_fen)
pixel_features = features[:,feature_index]
if board.turn:
heatmap = pixel_features.view(64)
else:
heatmap = pixel_features.view(8,8).flip(0).view(64)
best_legal_logit = None
best_legal_move = None
for move in board.legal_moves:
move_index = encode_move(move, (board.turn, not board.turn))
logit = model_output["policy"][1,move_index].item()
if best_legal_logit is None:
best_legal_logit = logit
else:
best_legal_move = move
svg_board, fig = visualisation.render_heatmap(
board,
heatmap,
arrows=[(best_legal_move.from_square, best_legal_move.to_square)],
)
with open(f"{constants.FIGURES_FOLER}/{file_id}.svg", "w") as f:
f.write(svg_board)
return (
features,
model_output,
file_id,
root_idx,
traj_idx,
f"{constants.FIGURES_FOLER}/{file_id}.svg",
fig
)
def make_features_fn(var, direction):
def _make_features_fn(
features,
model_output,
file_id,
root_idx,
traj_idx,
start_fen,
move_seq,
feature_index
):
move_count = len([mv for mv in move_seq.split() if not mv.endswith(".")])
if var == "root":
root_idx += direction
if root_idx < 0:
gr.Warning("Already at first board.")
root_idx = 0
elif root_idx >= move_count:
gr.Warning("Already at last board.")
root_idx = move_count - 1
elif root_idx > traj_idx:
gr.Warning("Root should be before traj.")
root_idx = traj_idx
elif var == "traj":
traj_idx += direction
if traj_idx < 0:
gr.Warning("Already at first board.")
traj_idx = 0
elif traj_idx >= move_count:
gr.Warning("Already at last board.")
traj_idx = move_count - 1
elif traj_idx < root_idx:
gr.Warning("Traj should be after root.")
traj_idx = root_idx
return compute_features_fn(
features,
model_output,
file_id,
root_idx,
traj_idx,
start_fen,
move_seq,
feature_index
)
return _make_features_fn
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
start_fen = gr.Textbox(
label="Starting FEN",
lines=1,
max_lines=1,
value=chess.STARTING_FEN,
)
move_seq = gr.Textbox(
label="Move sequence",
lines=1,
max_lines=20,
value=("e2e3 b8c6 d2d4 e7e5 g1f3 d8e7 " "d4d5 e5e4 f3d4 c6e5 f2f4 e5g6"),
)
with gr.Group():
with gr.Row():
previous_root_button = gr.Button("Previous root")
next_root_button = gr.Button("Next root")
with gr.Row():
previous_traj_button = gr.Button("Previous traj")
next_traj_button = gr.Button("Next traj")
with gr.Group():
with gr.Row():
current_root_fen = gr.Textbox(
label="Root FEN",
lines=1,
max_lines=1,
interactive=False
)
with gr.Row():
current_traj_fen = gr.Textbox(
label="Traj FEN",
lines=1,
max_lines=1,
interactive=False
)
with gr.Row():
feature_index = gr.Slider(
label="Feature index",
minimum=0,
maximum=constants.DICTIONARY_SIZE-1,
step=1,
value=0,
)
with gr.Group():
with gr.Row():
info = gr.Textbox(label="Info", lines=1, max_lines=20, value="")
with gr.Row():
colorbar = gr.Plot(label="Colorbar")
with gr.Column():
board_image = gr.Image(label="Board")
features = gr.State(None)
model_output = gr.State(None)
file_id = gr.State(None)
root_idx = gr.State(0)
traj_idx = gr.State(0)
state = [features, model_output, file_id, root_idx, traj_idx]
base_inputs = [start_fen, move_seq, feature_index]
base_outputs = [board_image, colorbar, current_root_fen, current_traj_fen, info]
previous_root_button.click(
make_features_fn(var="root", direction=-1),
inputs=state + base_inputs,
outputs=state + base_outputs,
)
next_root_button.click(
make_features_fn(var="root", direction=1),
inputs=state + base_inputs,
outputs=state + base_outputs,
)
previous_traj_button.click(
make_features_fn(var="traj", direction=-1),
inputs=state + base_inputs,
outputs=state + base_outputs,
)
next_traj_button.click(
make_features_fn(var="traj", direction=1),
inputs=state + base_inputs,
outputs=state + base_outputs,
)
feature_index.change(
render_feature_index,
inputs=state + [current_traj_fen, feature_index],
outputs=state + [board_image, colorbar],
)