File size: 7,199 Bytes
bfabd59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208fad8
bfabd59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208fad8
bfabd59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208fad8
bfabd59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208fad8
bfabd59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208fad8
bfabd59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""
Gradio interface for converting models.
"""

import os
import uuid
import re
import subprocess

import gradio as gr

from demo import constants, utils
from lczerolens import backends

def get_models_info(onnx=True, leela=True):
    """
    Get the names of the models in the model directory.
    """
    model_df = []
    exp = r"(?P<n_filters>\d+)x(?P<n_blocks>\d+)"
    if onnx:
        for filename in os.listdir(constants.ONNX_MODEL_DIRECTORY):
            if filename.endswith(".onnx"):
                match = re.search(exp, filename)
                if match is None:
                    n_filters = -1
                    n_blocks = -1
                else:
                    n_filters = int(match.group("n_filters"))
                    n_blocks = int(match.group("n_blocks"))
                model_df.append(
                    [
                        filename,
                        "ONNX",
                        n_blocks,
                        n_filters,
                    ]
                )
    if leela:
        for filename in os.listdir(constants.LEELA_MODEL_DIRECTORY):
            if filename.endswith(".pb.gz"):
                match = re.search(exp, filename)
                if match is None:
                    n_filters = -1
                    n_blocks = -1
                else:
                    n_filters = int(match.group("n_filters"))
                    n_blocks = int(match.group("n_blocks"))
                model_df.append(
                    [
                        filename,
                        "LEELA",
                        n_blocks,
                        n_filters,
                    ]
                )
    return model_df


def save_model(tmp_file_path):
    """
    Save the model to the model directory.
    """
    popen = subprocess.Popen(
        ["file", tmp_file_path],
        stdout=subprocess.PIPE,
        stderr=subprocess.PIPE,
    )
    popen.wait()
    if popen.returncode != 0:
        raise RuntimeError
    file_desc = popen.stdout.read().decode("utf-8").split(tmp_file_path)[1].strip()
    rename_match = re.search(r"was\s\"(?P<name>.+)\"", file_desc)
    type_match = re.search(r"\:\s(?P<type>[a-zA-Z]+)", file_desc)
    if rename_match is None or type_match is None:
        raise RuntimeError
    model_name = rename_match.group("name")
    model_type = type_match.group("type")
    if model_type != "gzip":
        raise RuntimeError
    os.rename(
        tmp_file_path,
        f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}.gz",
    )
    try:
        backends.describenet(
            f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}.gz",
        )
    except RuntimeError:
        os.remove(f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}.gz")
        raise RuntimeError


def list_models():
    """
    List the models in the model directory.
    """
    models_info = get_models_info()
    return sorted([[model_info[0]] for model_info in models_info])


def on_select_model_df(
    evt: gr.SelectData,
):
    """
    When a model is selected, update the statement.
    """
    return evt.value


def convert_model(
    model_name: str,
):
    """
    Convert the model.
    """
    if model_name == "":
        gr.Warning(
            "Please select a model.",
        )
        return list_models(), ""
    if model_name.endswith(".onnx"):
        gr.Warning(
            "ONNX conversion not implemented.",
        )
        return list_models(), ""
    try:
        backends.convert_to_onnx(
            f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}",
            f"{constants.ONNX_MODEL_DIRECTORY}/{model_name[:-6]}.onnx",
        )
    except RuntimeError:
        gr.Warning(
            f"Could not convert net at `{model_name}`.",
        )
        return list_models(), "Conversion failed"
    return list_models(), "Conversion successful"


def upload_model(
    model_file: gr.File,
):
    """
    Convert the model.
    """
    if model_file is None:
        gr.Warning(
            "File not uploaded.",
        )
        return list_models()
    try:
        id = uuid.uuid4()
        tmp_file_path = f"{constants.LEELA_MODEL_DIRECTORY}/{id}"
        with open(
            tmp_file_path,
            "wb",
        ) as f:
            f.write(model_file)
        save_model(tmp_file_path)
    except RuntimeError:
        gr.Warning(
            "Invalid file type.",
        )
    finally:
        if os.path.exists(tmp_file_path):
            os.remove(tmp_file_path)
    return list_models()


def get_model_description(
    model_name: str,
):
    """
    Get the model description.
    """
    if model_name == "":
        gr.Warning(
            "Please select a model.",
        )
        return ""
    if model_name.endswith(".onnx"):
        gr.Warning(
            "ONNX description not implemented.",
        )
        return ""
    try:
        description = backends.describenet(
            f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}",
        )
    except RuntimeError:
        raise gr.Error(
            f"Could not describe net at `{model_name}`.",
        )
    return description


def get_model_path(
    model_name: str,
):
    """
    Get the model path.
    """
    if model_name == "":
        gr.Warning(
            "Please select a model.",
        )
        return None
    if model_name.endswith(".onnx"):
        return f"{constants.ONNX_MODEL_DIRECTORY}/{model_name}"
    else:
        return f"{constants.LEELA_MODEL_DIRECTORY}/{model_name}"


with gr.Blocks() as interface:
    model_file = gr.File(type="binary")
    upload_button = gr.Button(
        value="Upload",
    )
    with gr.Row():
        with gr.Column(scale=2):
            model_df = gr.Dataframe(
                headers=["Available models"],
                datatype=["str"],
                interactive=False,
                type="array",
                value=list_models,
            )
        with gr.Column(scale=1):
            with gr.Row():
                model_name = gr.Textbox(label="Selected model", lines=1, interactive=False, scale=7)
            conversion_status = gr.Textbox(
                label="Conversion status",
                lines=1,
                interactive=False,
            )

    convert_button = gr.Button(
        value="Convert",
    )
    describe_button = gr.Button(
        value="Describe model",
    )
    model_description = gr.Textbox(
        label="Model description",
        lines=1,
        interactive=False,
    )
    download_button = gr.Button(
        value="Get download link",
    )
    download_file = gr.File(
        type="filepath",
        label="Download link",
        interactive=False,
    )

    model_df.select(
        on_select_model_df,
        None,
        model_name,
    )
    upload_button.click(
        upload_model,
        model_file,
        model_df,
    )
    convert_button.click(
        convert_model,
        model_name,
        [model_df, conversion_status],
    )
    describe_button.click(
        get_model_description,
        model_name,
        model_description,
    )
    download_button.click(
        get_model_path,
        model_name,
        download_file,
    )