File size: 7,808 Bytes
3333fb8
 
 
 
 
 
 
 
 
 
 
 
db21bce
980eda6
3333fb8
 
 
 
db21bce
3333fb8
 
 
db21bce
 
 
 
 
3333fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db21bce
3333fb8
 
db21bce
980eda6
3333fb8
980eda6
3333fb8
db21bce
3333fb8
db21bce
980eda6
3333fb8
980eda6
3333fb8
db21bce
3333fb8
db21bce
980eda6
3333fb8
980eda6
3333fb8
db21bce
 
3333fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
980eda6
 
 
db21bce
 
3333fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db21bce
980eda6
db21bce
3333fb8
 
 
db21bce
980eda6
db21bce
3333fb8
 
 
db21bce
980eda6
db21bce
3333fb8
 
 
db21bce
980eda6
db21bce
3333fb8
db21bce
 
 
3333fb8
db21bce
3333fb8
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""
Gradio interface for plotting attention.
"""

import chess
import chess.pgn
import io
import gradio as gr
import os

from lczerolens import LczeroBoard, LczeroModel, Lens

from demo import constants
from demo.utils import get_info

def get_model(model_name: str):
    return LczeroModel.from_onnx_path(os.path.join(constants.ONNX_MODEL_DIRECTORY, model_name))

def get_gradients(model: LczeroModel, board: LczeroBoard, target: str):
    lens = Lens.from_name("gradient")

    def init_target(model):
        if target == "best_move":
            return getattr(model, "output/policy").output.max(dim=1).values
        else:
            wdl_index = {"win": 0, "draw": 1, "loss": 2}[target]
            return getattr(model, "output/wdl").output[:, wdl_index]
    results = lens.analyse(model, board, init_target=init_target)

    return results["input_grad"]

def get_board(game_pgn:str, board_fen:str):
    if game_pgn:
        try:
            board = LczeroBoard()
            pgn = io.StringIO(game_pgn)
            game = chess.pgn.read_game(pgn)
            for move in game.mainline_moves():
                board.push(move)
        except Exception as e:
            print(e)
            gr.Warning("Error parsing PGN, using starting position.")
            board = LczeroBoard()
    else:
        try:
            board = LczeroBoard(board_fen)
        except Exception as e:
            print(e)
            gr.Warning("Invalid FEN, using starting position.")
            board = LczeroBoard()
    return board

def render_gradients(board: LczeroBoard, gradients, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index:int):
    if average_over_planes:
        heatmap = gradients[0, begin_average_index:end_average_index].mean(dim=0).view(64)
    else:
        heatmap = gradients[0, plane_index].view(64)
    board.render_heatmap(
        heatmap,
        save_to=f"{constants.FIGURE_DIRECTORY}/gradients.svg",
    )
    return  f"{constants.FIGURE_DIRECTORY}/gradients_board.svg", f"{constants.FIGURE_DIRECTORY}/gradients_colorbar.svg"

def initial_load(model_name: str, board_fen: str, game_pgn: str, target: str, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index: int):
    model = get_model(model_name)
    board = get_board(game_pgn, board_fen)
    gradients = get_gradients(model, board, target)
    info = get_info(model, board)
    plots = render_gradients(board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index)
    return model, board, gradients, info, *plots

def on_board_change(model: LczeroModel, game_pgn: str, board_fen: str, target: str, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index: int):
    board = get_board(game_pgn, board_fen)
    gradients = get_gradients(model, board, target)
    info = get_info(model, board)
    plots = render_gradients(board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index)
    return board, gradients, info, *plots

def on_model_change(model_name: str, board: LczeroBoard, target: str, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index: int):
    model = get_model(model_name)
    gradients = get_gradients(model, board, target)
    info = get_info(model, board)
    plots = render_gradients(board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index)
    return model, gradients, info, *plots

def on_target_change(model: LczeroModel, board: LczeroBoard, target: str, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index: int):
    gradients = get_gradients(model, board, target)
    plots = render_gradients(board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index)
    return gradients, *plots

with gr.Blocks() as interface:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                gr.Markdown(
                    "Specify the game PGN or FEN string that you want to analyse (PGN overrides FEN)."
                )
                game_pgn = gr.Textbox(
                    label="Game PGN",
                    lines=1,
                    value="",
                )
                board_fen = gr.Textbox(
                    label="Board FEN",
                    lines=1,
                    max_lines=1,
                    value=chess.STARTING_FEN,
                )
                model_name = gr.Dropdown(
                    label="Model",
                    choices=constants.ONNX_MODEL_NAMES,
                )
            with gr.Group():
                info = gr.Textbox(label="Info", lines=1, value="")
            with gr.Group():
                target = gr.Radio(
                    ["win", "draw", "loss", "best_move"], label="Target",
                    value="win",
                )
                average_over_planes = gr.Checkbox(label="Average over Planes", value=False)
                with gr.Accordion("Average over planes", open=False):
                    begin_average_index = gr.Slider(
                        label="Begin average index",
                        minimum=0,
                        maximum=111,
                        step=1,
                        value=0,
                    )
                    end_average_index = gr.Slider(
                        label="End average index",
                        minimum=0,
                        maximum=111,
                        step=1,
                        value=111,
                    )
                plane_index = gr.Slider(
                    label="Plane index",
                    minimum=0,
                    maximum=111,
                    step=1,
                    value=0,
                )
        with gr.Column():
            image_board = gr.Image(label="Board", interactive=False)
            colorbar = gr.Image(label="Colorbar", interactive=False)

    model = gr.State(value=None)
    board = gr.State(value=None)
    gradients = gr.State(value=None)

    interface.load(
        initial_load,
        inputs=[model_name, game_pgn, board_fen, target, average_over_planes, begin_average_index, end_average_index, plane_index],
        outputs=[model, board, gradients, info, image_board, colorbar],
        concurrency_id="trace_queue"
    )
    game_pgn.submit(
        on_board_change,
        inputs=[model, game_pgn, board_fen, target, average_over_planes, begin_average_index, end_average_index, plane_index],
        outputs=[board, gradients, info, image_board, colorbar],
        concurrency_id="trace_queue"
    )
    board_fen.submit(
        on_board_change,
        inputs=[model, game_pgn, board_fen, target, average_over_planes, begin_average_index, end_average_index, plane_index],
        outputs=[board, gradients, info, image_board, colorbar],
        concurrency_id="trace_queue"
    )
    model_name.change(
        on_model_change,
        inputs=[model_name, board, target, average_over_planes, begin_average_index, end_average_index, plane_index],
        outputs=[model, gradients, info, image_board, colorbar],
        concurrency_id="trace_queue"
    )
    target.change(
        on_target_change,
        inputs=[model, board, target, average_over_planes, begin_average_index, end_average_index, plane_index],
        outputs=[gradients, image_board, colorbar],
        concurrency_id="trace_queue"
    )
    for render_arg in [average_over_planes, begin_average_index, end_average_index, plane_index]:
        render_arg.change(
            render_gradients,
            inputs=[board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index],
            outputs=[image_board, colorbar],
        )