Xmaster6y's picture
fixed concu & best move
db21bce
raw
history blame
7.57 kB
"""
Gradio interface for plotting attention.
"""
import chess
import chess.pgn
import io
import gradio as gr
import os
from lczerolens import LczeroBoard, LczeroModel, Lens
from demo import constants
def get_model(model_name: str):
return LczeroModel.from_onnx_path(os.path.join(constants.ONNX_MODEL_DIRECTORY, model_name))
def get_gradients(model: LczeroModel, board: LczeroBoard, target: str):
lens = Lens.from_name("gradient")
def init_target(model):
if target == "best_move":
return getattr(model, "output/policy").output.max(dim=1).values
else:
wdl_index = {"win": 0, "draw": 1, "loss": 2}[target]
return getattr(model, "output/wdl").output[:, wdl_index]
results = lens.analyse(model, board, init_target=init_target)
return results["input_grad"]
def get_board(game_pgn:str, board_fen:str):
if game_pgn:
try:
board = LczeroBoard()
pgn = io.StringIO(game_pgn)
game = chess.pgn.read_game(pgn)
for move in game.mainline_moves():
board.push(move)
except Exception as e:
print(e)
gr.Warning("Error parsing PGN, using starting position.")
board = LczeroBoard()
else:
try:
board = LczeroBoard(board_fen)
except Exception as e:
print(e)
gr.Warning("Invalid FEN, using starting position.")
board = LczeroBoard()
return board
def render_gradients(board: LczeroBoard, gradients, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index:int):
if average_over_planes:
heatmap = gradients[0, begin_average_index:end_average_index].mean(dim=0).view(64)
else:
heatmap = gradients[0, plane_index].view(64)
board.render_heatmap(
heatmap,
save_to=f"{constants.FIGURE_DIRECTORY}/gradients.svg",
)
return f"{constants.FIGURE_DIRECTORY}/gradients_board.svg", f"{constants.FIGURE_DIRECTORY}/gradients_colorbar.svg"
def initial_load(model_name: str, board_fen: str, game_pgn: str, target: str, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index: int):
model = get_model(model_name)
board = get_board(game_pgn, board_fen)
gradients = get_gradients(model, board, target)
plots = render_gradients(board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index)
return model, board, gradients, *plots
def on_board_change(model: LczeroModel, game_pgn: str, board_fen: str, target: str, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index: int):
board = get_board(game_pgn, board_fen)
gradients = get_gradients(model, board, target)
plots = render_gradients(board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index)
return board, gradients, *plots
def on_model_change(model_name: str, board: LczeroBoard, target: str, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index: int):
model = get_model(model_name)
gradients = get_gradients(model, board, target)
plots = render_gradients(board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index)
return model, gradients, *plots
def on_target_change(model: LczeroModel, board: LczeroBoard, target: str, average_over_planes:bool, begin_average_index:int, end_average_index:int, plane_index: int):
gradients = get_gradients(model, board, target)
plots = render_gradients(board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index)
return gradients, *plots
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown(
"Specify the game PGN or FEN string that you want to analyse (PGN overrides FEN)."
)
game_pgn = gr.Textbox(
label="Game PGN",
lines=1,
value="",
)
board_fen = gr.Textbox(
label="Board FEN",
lines=1,
max_lines=1,
value=chess.STARTING_FEN,
)
with gr.Group():
model_name = gr.Dropdown(
label="Model",
choices=constants.ONNX_MODEL_NAMES,
)
target = gr.Radio(
["win", "draw", "loss", "best_move"], label="Target",
value="win",
)
with gr.Group():
average_over_planes = gr.Checkbox(label="Average over Planes", value=False)
with gr.Accordion("Average over planes", open=False):
begin_average_index = gr.Slider(
label="Begin average index",
minimum=0,
maximum=111,
step=1,
value=0,
)
end_average_index = gr.Slider(
label="End average index",
minimum=0,
maximum=111,
step=1,
value=111,
)
plane_index = gr.Slider(
label="Plane index",
minimum=0,
maximum=111,
step=1,
value=0,
)
with gr.Column():
image_board = gr.Image(label="Board", interactive=False)
colorbar = gr.Image(label="Colorbar", interactive=False)
model = gr.State(value=None)
board = gr.State(value=None)
gradients = gr.State(value=None)
interface.load(
initial_load,
inputs=[model_name, game_pgn, board_fen, target, average_over_planes, begin_average_index, end_average_index, plane_index],
outputs=[model, board, gradients, image_board, colorbar],
concurrency_id="trace_queue"
)
game_pgn.submit(
on_board_change,
inputs=[model, game_pgn, board_fen, target, average_over_planes, begin_average_index, end_average_index, plane_index],
outputs=[board, gradients, image_board, colorbar],
concurrency_id="trace_queue"
)
board_fen.submit(
on_board_change,
inputs=[model, game_pgn, board_fen, target, average_over_planes, begin_average_index, end_average_index, plane_index],
outputs=[board, gradients, image_board, colorbar],
concurrency_id="trace_queue"
)
model_name.change(
on_model_change,
inputs=[model_name, board, target, average_over_planes, begin_average_index, end_average_index, plane_index],
outputs=[model, gradients, image_board, colorbar],
concurrency_id="trace_queue"
)
target.change(
on_target_change,
inputs=[model, board, target, average_over_planes, begin_average_index, end_average_index, plane_index],
outputs=[gradients, image_board, colorbar],
concurrency_id="trace_queue"
)
for render_arg in [average_over_planes, begin_average_index, end_average_index, plane_index]:
render_arg.change(
render_gradients,
inputs=[board, gradients, average_over_planes, begin_average_index, end_average_index, plane_index],
outputs=[image_board, colorbar],
)