Xmaster6y's picture
new working demo
3333fb8
raw
history blame
5.78 kB
"""
Gradio interface for plotting attention.
"""
import chess
import chess.pgn
import io
import gradio as gr
import os
import torch
from lczerolens import LczeroBoard, LczeroModel, Lens
from .. import constants
def get_model(model_name: str):
return LczeroModel.from_onnx_path(os.path.join(constants.ONNX_MODEL_DIRECTORY, model_name))
def get_activations(model: LczeroModel, board: LczeroBoard):
lens = Lens.from_name("activation", "block\d/conv2/relu")
with torch.no_grad():
results = lens.analyse(model, board)
return [results[f"block{i}/conv2/relu_output"][0] for i in range(len(results))]
def get_board(game_pgn:str, board_fen:str):
if game_pgn:
try:
board = LczeroBoard()
pgn = io.StringIO(game_pgn)
game = chess.pgn.read_game(pgn)
for move in game.mainline_moves():
board.push(move)
except Exception as e:
print(e)
gr.Warning("Error parsing PGN, using starting position.")
board = LczeroBoard()
else:
try:
board = LczeroBoard(board_fen)
except Exception as e:
print(e)
gr.Warning("Invalid FEN, using starting position.")
board = LczeroBoard()
return board
def render_activations(board: LczeroBoard, activations, layer_index:int, channel_index:int):
if layer_index >= len(activations):
safe_layer_index = len(activations) - 1
gr.Warning(f"Layer index {layer_index} out of range, using last layer ({safe_layer_index}).")
else:
safe_layer_index = layer_index
if channel_index >= activations[safe_layer_index].shape[0]:
safe_channel_index = activations[safe_layer_index].shape[0] - 1
gr.Warning(f"Channel index {channel_index} out of range, using last channel ({safe_channel_index}).")
else:
safe_channel_index = channel_index
heatmap = activations[safe_layer_index][safe_channel_index].view(64)
board.render_heatmap(
heatmap,
save_to=f"{constants.FIGURE_DIRECTORY}/activations.svg",
)
return f"{constants.FIGURE_DIRECTORY}/activations_board.svg", f"{constants.FIGURE_DIRECTORY}/activations_colorbar.svg"
def initial_load(model_name: str, board_fen: str, game_pgn: str, layer_index: int, channel_index: int):
model = get_model(model_name)
board = get_board(game_pgn, board_fen)
activations = get_activations(model, board)
plots = render_activations(board, activations, layer_index, channel_index)
return model, board, activations, *plots
def on_board_change(model: LczeroModel, game_pgn: str, board_fen: str, layer_index: int, channel_index: int):
board = get_board(game_pgn, board_fen)
activations = get_activations(model, board)
plots = render_activations(board, activations, layer_index, channel_index)
return board, activations, *plots
def on_model_change(model_name: str, board: LczeroBoard, layer_index: int, channel_index: int):
model = get_model(model_name)
activations = get_activations(model, board)
plots = render_activations(board, activations, layer_index, channel_index)
return model, activations, *plots
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown(
"Specify the game PGN or FEN string that you want to analyse (PGN overrides FEN)."
)
game_pgn = gr.Textbox(
label="Game PGN",
lines=1,
value="",
)
board_fen = gr.Textbox(
label="Board FEN",
lines=1,
max_lines=1,
value=chess.STARTING_FEN,
)
with gr.Group():
model_name = gr.Dropdown(
label="Model",
choices=constants.ONNX_MODEL_NAMES,
)
layer_index = gr.Slider(
label="Layer index",
minimum=0,
maximum=19,
step=1,
value=0,
)
channel_index = gr.Slider(
label="Channel index",
minimum=0,
maximum=200,
step=1,
value=0,
)
with gr.Column():
image_board = gr.Image(label="Board", interactive=False)
colorbar = gr.Image(label="Colorbar", interactive=False)
model = gr.State(value=None)
board = gr.State(value=None)
activations = gr.State(value=None)
interface.load(
initial_load,
inputs=[model_name, game_pgn, board_fen, layer_index, channel_index],
outputs=[model, board, activations, image_board, colorbar],
)
game_pgn.submit(
on_board_change,
inputs=[model, game_pgn, board_fen, layer_index, channel_index],
outputs=[board, activations, image_board, colorbar],
)
board_fen.submit(
on_board_change,
inputs=[model, game_pgn, board_fen, layer_index, channel_index],
outputs=[board, activations, image_board, colorbar],
)
model_name.change(
on_model_change,
inputs=[model_name, board, layer_index, channel_index],
outputs=[model, activations, image_board, colorbar],
)
layer_index.change(
render_activations,
inputs=[board, activations, layer_index, channel_index],
outputs=[image_board, colorbar],
)
channel_index.change(
render_activations,
inputs=[board, activations, layer_index, channel_index],
outputs=[image_board, colorbar],
)