Spaces:
Runtime error
Runtime error
File size: 2,503 Bytes
c2f1466 722ab73 c2f1466 40641cd cf7a07e da9b438 7192ffe da9b438 464280b e846f7d c2f1466 da9b438 6392832 6b65fd5 447a98e 6b65fd5 c2f1466 4d99237 c2f1466 9a0ac86 c2f1466 9a0ac86 c2f1466 4d99237 6b65fd5 c2f1466 5be15aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import gradio as gr
from gradio_client import Client as GrClient
import inspect
from gradio import routes
from typing import List, Type
from aiogoogletrans import Translator
import requests, os, re, asyncio
loop = asyncio.get_event_loop()
gradio_client = GrClient(os.environ.get('GrClient_url'))
translator = Translator()
# Monkey patch
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
# App code
def mbti(x):
t = loop.run_until_complete(translator.translate(x, src='ko', dest='en'))
str_trans = re.sub('[-=+,#/\?:^.@*\"β»~γ!γβ|\(\)\[\]`\'β¦γ\β\β\βΒ·]', '', t.text)
result = gradio_client.predict(
str_trans, # str representing input in 'User input' Textbox component
fn_index=2
)
return result
def chat(x):
result = gradio_client.predict(
x,# str representing input in 'User input' Textbox component
0.9, # float, representing input in 'Top-p (nucleus sampling)' Slider component
50, # int, representing input in 'Top-k (nucleus sampling)' Slider component
0.9, # float, representing input in 'Temperature' Slider component
25, # int, representing input in 'Max New Tokens' Slider component
1.1, # float, representing input in 'repetition_penalty' Slider component
fn_index=0
)
return result
def yn(x):
result = gradio_client.predict(
x, # str representing input in 'User input' Textbox component
fn_index=1
)
return result
with gr.Blocks() as demo:
aa = gr.Interface(
fn=yn,
inputs="text",
outputs="text",
examples=[
["yes,no"]
],
)
bb = gr.Interface(
fn=chat,
inputs="text",
outputs="text",
examples=[
["chat"]
],
)
cc = gr.Interface(
fn=mbti,
inputs="text",
outputs="text",
examples=[
["mbti"]
],
)
demo.queue(max_size=32).launch(enable_queue=True) |