Spaces:
Runtime error
Runtime error
File size: 4,439 Bytes
e48ab6b 2c77c32 8cccf6a 5c54d1b 669a4c0 e48ab6b 24fbd15 e48ab6b 6fce119 50be456 3e48437 61e57ac 8fefd32 6fce119 8fefd32 bfae98b 68b221f bfae98b 8fefd32 ea6b9f5 61e57ac 7b0437a 4c9e80d 7b0437a 96906d9 3e48437 5ec78b2 ea6b9f5 6fce119 ea6b9f5 6fce119 ea6b9f5 6fce119 ea6b9f5 6fce119 ea6b9f5 8fefd32 6fce119 a2f0814 8fefd32 96906d9 7b0437a 02c9e3b 7b0437a 4c9e80d 7b0437a 96906d9 e48ab6b f0e04ff e48ab6b 24fbd15 1418034 e48ab6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
from threading import Thread
import gradio as gr
import inspect
from gradio import routes
from typing import List, Type
from petals import AutoDistributedModelForCausalLM
from transformers import AutoTokenizer
import requests, os, re, asyncio, json
loop = asyncio.get_event_loop()
# init code
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
# App code
model_name = "petals-team/StableBeluga2"
#daekeun-ml/Llama-2-ko-instruct-13B
#quantumaikr/llama-2-70b-fb16-korean
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = None
history = {
"":{
}
}
def check(model_name):
data = requests.get("https://health.petals.dev/api/v1/state").json()
out = []
for d in data['model_reports']:
if d['name'] == model_name:
if d['state']=="healthy":
return True
return False
def init():
global model
if check(model_name):
model = AutoDistributedModelForCausalLM.from_pretrained(model_name)
def chat(id, npc, text):
if model == None:
init()
return "no model"
# get_coin endpoint
response = requests.post("https://ldhldh-api-for-unity.hf.space/run/predict_6", json={
"data": [
id,
]}).json()
coin = response["data"][0]
if int(coin) == 0:
return "no coin"
# model inference
if check(model_name):
global history
if not npc in npc_story:
return "no npc"
if not npc in history:
history[npc] = {}
if not id in history[npc]:
history[npc][id] = ""
if len(history[npc][id].split("###")) > 10:
history[npc][id] = "###" + history[npc][id].split("###", 3)[3]
npc_list = str([k for k in npc_story.keys()]).replace('\'', '')
town_story = f"""[{id}์ ๋ง์]
์ธ๋ด ๊ณณ์ ์กฐ๊ทธ๋ง ์ฌ์ ์ฌ๋ฌ ์ฃผ๋ฏผ๋ค์ด ๋ชจ์ฌ ์ด๊ณ ์์ต๋๋ค.
ํ์ฌ {npc_list}์ด ์ด๊ณ ์์ต๋๋ค."""
system_message = f"""1. ๋น์ ์ ํ๊ตญ์ด์ ๋ฅ์ํฉ๋๋ค.
2. ๋น์ ์ ์ง๊ธ ์ญํ ๊ทน์ ํ๊ณ ์์ต๋๋ค. {npc}์ ๋ฐ์์ ์์ํ๊ณ ๋งค๋ ฅ์ ์ด๊ฒ ํํํฉ๋๋ค.
3. ๋น์ ์ {npc}์
๋๋ค. {npc}์ ์
์ฅ์์ ์๊ฐํ๊ณ ๋งํฉ๋๋ค.
4. ์ฃผ์ด์ง๋ ์ ๋ณด๋ฅผ ๋ฐํ์ผ๋ก ๊ฐ์ฐ์ฑ์๊ณ ์ค๊ฐ๋๋ {npc}์ ๋์ฌ๋ฅผ ์์ฑํ์ธ์.
5. ์ฃผ์ด์ง๋ {npc}์ ์ ๋ณด๋ฅผ ์ ์คํ๊ฒ ์ฝ๊ณ , ๊ณผํ์ง ์๊ณ ๋ด๋ฐฑํ๊ฒ ์บ๋ฆญํฐ๋ฅผ ์ฐ๊ธฐํ์ธ์.
6. User์ ์ญํ ์ ์ ๋๋ก ์นจ๋ฒํ์ง ๋ง์ธ์. ๊ฐ์ ๋ง์ ๋ฐ๋ณตํ์ง ๋ง์ธ์.
7. {npc}์ ๋งํฌ๋ฅผ ์ง์ผ์ ์์ฑํ์ธ์."""
prom = f"""<<SYS>>
{system_message}<</SYS>>
{town_story}
### ์บ๋ฆญํฐ ์ ๋ณด: {npc_story[npc]}
### ๋ช
๋ น์ด:
{npc}์ ์ ๋ณด๋ฅผ ์ฐธ๊ณ ํ์ฌ {npc}์ด ํ ๋ง์ ์ํฉ์ ๋ง์ถฐ ์์ฐ์ค๋ฝ๊ฒ ์์ฑํด์ฃผ์ธ์.
{history[npc][id]}
### User:
{text}
### {npc}:
"""
inputs = tokenizer(prom, return_tensors="pt")["input_ids"]
outputs = model.generate(inputs, do_sample=True, temperature=0.6, top_p=0.75, max_new_tokens=100)
output = tokenizer.decode(outputs[0])[len(prom)+3:-1].split("<")[0].split("###")[0].replace(". ", ".\n")
print(outputs)
print(output)
else:
output = "no model"
# add_transaction endpoint
response = requests.post("https://ldhldh-api-for-unity.hf.space/run/predict_5", json={
"data": [
id,
"inference",
"### input:\n" + prompt + "\n\n### output:\n" + output
]}).json()
d = response["data"][0]
return output
with gr.Blocks() as demo:
count = 0
aa = gr.Interface(
fn=chat,
inputs=["text","text","text"],
outputs="text",
description="chat, ai ์๋ต์ ๋ฐํํฉ๋๋ค. ๋ด๋ถ์ ์ผ๋ก ํธ๋์ญ์
์์ฑ. \n /run/predict",
)
demo.queue(max_size=32).launch(enable_queue=True) |