api_for_chat / app.py
ldhldh's picture
Update app.py
0e70681
raw
history blame
1.64 kB
import gradio as gr
from gradio_client import Client as GrClient
import inspect
from gradio import routes
from typing import List, Type
import requests, os, re, asyncio, time
loop = asyncio.get_event_loop()
gradio_client = GrClient(os.environ.get('GrClient_url'))
# Monkey patch
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
# App code
def chat(x, id, url):
start = time.time()
result = gradio_client.predict(
x,
# str representing input in 'User input' Textbox component
50,
id,
url,
fn_index=0
)
result = str(result)
end = time.time()
sec = (end - start)
result_list = str(datetime.timedelta(seconds=sec)).split(".")
print()
print("응닡 μ‹œκ°„ : " + result_list[0] +"\n"+ x +", "+ id +", "+ url +", "+ result)
return result
with gr.Blocks() as demo:
count = 0
aa = gr.Interface(
fn=chat,
inputs=["text","text", "text"],
outputs="text",
description="chat",
)
demo.queue(max_size=32).launch(enable_queue=True)