api_for_chat / app.py
ldhldh's picture
Update app.py
da9b438
raw
history blame
3.32 kB
import gradio as gr
from gradio_client import Client as GrClient
import inspect
from gradio import routes
from typing import List, Type
from aiogoogletrans import Translator
import requests, os, re, asyncio
loop = asyncio.get_event_loop()
gradio_client = GrClient(os.environ.get('GrClient_url'))
translator = Translator()
# Monkey patch
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
# App code
def mbti(x):
t = loop.run_until_complete(translator.translate(x, src='ko', dest='en'))
str_trans = re.sub('[-=+,#/\?:^.@*\"β€»~ㆍ!γ€β€˜|\(\)\[\]`\'…》\”\β€œ\’·]', '', t.text)
result = gradio_client.predict(
str_trans, # str representing input in 'User input' Textbox component
fn_index=2
)
return result
def chat(x):
result = gradio_client.predict(
x,# str representing input in 'User input' Textbox component
0.9, # float, representing input in 'Top-p (nucleus sampling)' Slider component
50, # int, representing input in 'Top-k (nucleus sampling)' Slider component
0.7, # float, representing input in 'Temperature' Slider component
25, # int, representing input in 'Max New Tokens' Slider component
1.2, # float, representing input in 'repetition_penalty' Slider component
fn_index=0
)
return result
def yn(x):
result = gradio_client.predict(
x, # str representing input in 'User input' Textbox component
fn_index=1
)
return result
with gr.Blocks() as blk:
gr.Markdown("# Gradio Blocks (3.0) with REST API")
t = gr.Textbox()
c = gr.Button("mbti")
b = gr.Button("chat")
a = gr.Button("yn")
o = gr.Textbox()
c.click(mbti, inputs=[t], outputs=[o])
b.click(chat, inputs=[t], outputs=[o])
a.click(yn, inputs=[t], outputs=[o])
gr.Markdown("""
## API
Can select which function to use by passing in `fn_index`:
```python
import requests
requests.post(
url="https://hf.space/embed/versae/gradio-blocks-rest-api/+/api/predict/", json={"data": ["Jessie"], "fn_index": 0}
).json()
requests.post(
url="https://hf.space/embed/versae/gradio-blocks-rest-api/+/api/predict/", json={"data": ["Jessie"], "fn_index": 1}
).json()
```
Or using cURL
```
$ curl -X POST https://hf.space/embed/versae/gradio-blocks-rest-api/+/api/predict/ -H 'Content-Type: application/json' -d '{"data": ["Jessie"], "fn_index": 0}'
$ curl -X POST https://hf.space/embed/versae/gradio-blocks-rest-api/+/api/predict/ -H 'Content-Type: application/json' -d '{"data": ["Jessie"], "fn_index": 1}'
```""")
ifa = gr.Interface(lambda: None, inputs=[t], outputs=[o])
blk.input_components = ifa.input_components
blk.output_components = ifa.output_components
blk.examples = None
blk.predict_durations = []
bapp = blk.launch()