File size: 3,468 Bytes
c2f1466
722ab73
c2f1466
 
 
40641cd
cf7a07e
da9b438
7192ffe
da9b438
464280b
e846f7d
c2f1466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da9b438
6392832
6b65fd5
447a98e
6b65fd5
 
 
 
c2f1466
 
 
4d99237
c2f1466
 
9a0ac86
c2f1466
9a0ac86
c2f1466
 
 
 
 
 
4d99237
6b65fd5
c2f1466
 
 
 
e47bcc0
 
 
 
 
 
 
 
 
 
 
 
 
c2f1466
e47bcc0
 
 
 
 
 
 
 
 
 
 
 
 
c2f1466
e47bcc0
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
from gradio_client import Client as GrClient
import inspect
from gradio import routes
from typing import List, Type
from aiogoogletrans import Translator 

import requests, os, re, asyncio

loop = asyncio.get_event_loop()
gradio_client = GrClient(os.environ.get('GrClient_url'))
translator = Translator()
# Monkey patch
def get_types(cls_set: List[Type], component: str):
    docset = []
    types = []
    if component == "input":
        for cls in cls_set:
            doc = inspect.getdoc(cls)
            doc_lines = doc.split("\n")
            docset.append(doc_lines[1].split(":")[-1])
            types.append(doc_lines[1].split(")")[0].split("(")[-1])
    else:
        for cls in cls_set:
            doc = inspect.getdoc(cls)
            doc_lines = doc.split("\n")
            docset.append(doc_lines[-1].split(":")[-1])
            types.append(doc_lines[-1].split(")")[0].split("(")[-1])
    return docset, types
routes.get_types = get_types

# App code
def mbti(x):
    t = loop.run_until_complete(translator.translate(x, src='ko', dest='en'))
    str_trans = re.sub('[-=+,#/\?:^.@*\"※~ㆍ!』‘|\(\)\[\]`\'…》\”\“\’·]', '', t.text)
    result = gradio_client.predict(
				str_trans,	# str representing input in 'User input' Textbox component
				fn_index=2
    )
    
    return result
    
def chat(x):
    result = gradio_client.predict(
        x,# str representing input in 'User input' Textbox component
		0.9,	# float, representing input in 'Top-p (nucleus sampling)' Slider component
		50,	# int, representing input in 'Top-k (nucleus sampling)' Slider component
		0.9,	# float, representing input in 'Temperature' Slider component
		25,	# int, representing input in 'Max New Tokens' Slider component
		1.1,	# float, representing input in 'repetition_penalty' Slider component
		fn_index=0
    )
    return result

def yn(x):
    result = gradio_client.predict(
				x,	# str representing input in 'User input' Textbox component
				fn_index=1
    )
    return result


aa = gradio.Interface(
  fn=yn,
  inputs="text",
  outputs="text",
  examples=[
    ["Jill"],
    ["Sam"]
  ],
  title="REST API with Gradio and Huggingface Spaces",
  description="This is a demo of how to build an AI powered REST API with Gradio and Huggingface Spaces – for free! Based on [this article](https://www.tomsoderlund.com/ai/building-ai-powered-rest-api). See the **Use via API** link at the bottom of this page.",
  article="© Tom Söderlund 2022"
)
aa.launch()

bb = gradio.Interface(
  fn=chat,
  inputs="text",
  outputs="text",
  examples=[
    ["Jill"],
    ["Sam"]
  ],
  title="REST API with Gradio and Huggingface Spaces",
  description="This is a demo of how to build an AI powered REST API with Gradio and Huggingface Spaces – for free! Based on [this article](https://www.tomsoderlund.com/ai/building-ai-powered-rest-api). See the **Use via API** link at the bottom of this page.",
  article="© Tom Söderlund 2022"
)
bb.launch()

cc = gradio.Interface(
  fn=mbti,
  inputs="text",
  outputs="text",
  examples=[
    ["Jill"],
    ["Sam"]
  ],
  title="REST API with Gradio and Huggingface Spaces",
  description="This is a demo of how to build an AI powered REST API with Gradio and Huggingface Spaces – for free! Based on [this article](https://www.tomsoderlund.com/ai/building-ai-powered-rest-api). See the **Use via API** link at the bottom of this page.",
  article="© Tom Söderlund 2022"
)
cc.launch()