Spaces:
Sleeping
Sleeping
File size: 5,707 Bytes
e48ab6b cf7a07e 5c54d1b 7cc0b92 e48ab6b 5c54d1b 750173b 669a4c0 e48ab6b 24fbd15 e48ab6b 24fbd15 e48ab6b 9e16fe0 e48ab6b 9e16fe0 e48ab6b 9e16fe0 e48ab6b 9e16fe0 e48ab6b 06f7edb e48ab6b c42a6a7 e48ab6b 06f7edb e48ab6b c42a6a7 e48ab6b ccdb9b2 24fbd15 96906d9 91a2d51 e48ab6b 96906d9 e48ab6b ccdb9b2 dee7d82 24fbd15 96906d9 f33f723 96906d9 24fbd15 96906d9 92d7e15 24fbd15 8ad6bff 81ec765 8ad6bff 98df8de bd0b9ee 81ec765 bd0b9ee 98df8de 7cc0b92 98df8de 0315d84 98df8de 96906d9 cc5346d 96906d9 fd2e34b 96906d9 e48ab6b f223851 e48ab6b 47fb575 e48ab6b 47fb575 e48ab6b 47fb575 e48ab6b 47fb575 e48ab6b 47fb575 e48ab6b 96906d9 47fb575 96906d9 98df8de 47fb575 98df8de 1ba73e4 47fb575 1ba73e4 e48ab6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
from threading import Thread
import gradio as gr
import inspect
from gradio import routes
from typing import List, Type
import requests, os, re, asyncio, json
import math, random
import time
import datetime
import hashlib
from Blockchain import Blockchain
loop = asyncio.get_event_loop()
# init code
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
# App code
account_list = dict()
account_list['id'] = "pass"
name_list = dict()
name_list['id'] = 'name'
p2p_list = dict()
p2p_list['id'] = '11111111'
gpu_add_list = []
def register(id, pw):
if id in account_list:
return "exist"
else:
account_list[id] = pw
return "ok"
def login(id, pw):
if id in account_list:
if account_list[id] == pw:
return "ok"
else:
return "password error"
else:
return "no id"
def add_name(id, name):
name_list[id] = name
return "ok"
def get_name(id):
if id in name_list:
return name_list[id]
else:
return "no id"
def get_id(name):
reverse_dict= dict(map(reversed,name_list.items()))
if name in reverse_dict:
return reverse_dict[name]
else:
return "no name"
def add_p(id, p_id):
p2p_list[id] = p_id
return "ok"
def get_p(id):
if id in p2p_list:
return p2p_list[id]
else:
return "no id"
def get_id_from_p2p(i):
reverse_dict= dict(map(reversed,p2p_list.items()))
if i in reverse_dict:
return reverse_dict[i]
else:
return "no id"
# Blockchain code
model_name = "petals-team/StableBeluga2"
def get_peers(model_name):
data = requests.get("https://health.petals.dev/api/v1/state").json()
out = []
for d in data['model_reports']:
if d['name'] == model_name:
for r in d['server_rows']:
out.append(r['peer_id'])
return out
def get_used_gpus(model_name):
data = requests.get("https://health.petals.dev/api/v1/state").json()
out = []
for d in data['model_reports']:
if d['name'] == model_name:
return round(d['num_blocks']/0.45, 2)
return 0
blockchain = Blockchain()
def add_transaction(id, kind, data):
if kind == "add" or kind == "inference" or kind == "out":
blockchain.new_transaction(id, kind, data)
if len(blockchain.current_transactions)>=10:
proof(model_name)
new_block = blockchain.new_block()
return "ok"
else:
return "fail"
def proof(model_name):
peers = get_peers(model_name)
for id in blockchain.user_gpus:
if not get_p(id) in peers:
add_transaction(id, "out", 0)
def get_coin(id):
c = blockchain.get_user_balance(id)
return c
def get_gpus():
output = []
for id, mem in blockchain.user_gpus.items():
output.append({"name":get_name(id),"gpu":mem})
return output
def used_gpu():
output = 0
for mem in get_gpus():
output += mem * (5 + random.randrange(1,4)/10)
return output
def get_data():
output = []
output.append({"gpus":get_gpus(), "total":{"total" : blockchain.get_total_gpu_mem(), "used":get_used_gpus(model_name)}, "chain":blockchain.chain})
return output[0]
def chat(id, npc, prompt):
if get_coin(id) == 0:
return "no coin"
# model inference
output = "AI ์๋ต์
๋๋ค."
add_transaction(id, "inference", {"prompt":prompt, "output":output})
return output
with gr.Blocks() as demo:
rr = gr.Interface(
fn=register,
inputs=["text", "text"],
outputs="text",
description="register, ํ์๊ฐ์
(์ฑ๊ณต์:ok, ์ค๋ณต์:exist ๋ฐํ)\n /run/predict",
)
ll = gr.Interface(
fn=login,
inputs=["text", "text"],
outputs="text",
description="login, ๋ก๊ทธ์ธ(์ฑ๊ณต์: ok, ์คํจ์: password error, ์์ด๋๊ฐ ์์ผ๋ฉด: no id) \n /run/predict_",
)
ad = gr.Interface(
fn=add_name,
inputs=["text", "text"],
outputs="text",
description="add_name, id๋ก ๋๋ค์ ์ถ๊ฐ. ok ๋ฐํ.\n /run/predict_2",
)
nn = gr.Interface(
fn=get_name,
inputs=["text"],
outputs="text",
description="get_name, id๋ก ๋๋ค์ ๋ฐํ(์์ผ๋ฉด no id)\n /run/predict_3",
)
adp = gr.Interface(
fn=add_p,
inputs=["text", "text"],
outputs="text",
description="add_p, id๋ก p2p id ์ถ๊ฐ. ok ๋ฐํ. \n /run/predict_4",
)
addp = gr.Interface(
fn=add_transaction,
inputs=["text", "text", "text"],
outputs="text",
description="add_transaction \n /run/predict_5",
)
gc = gr.Interface(
fn=get_coin,
inputs=["text"],
outputs="text",
description="get_coin, id๋ก ์์ฌ ์ฝ์ธ(ํ๋๋ ฅ) ๋ฐํ. \n /run/predict_6",
)
gd = gr.Interface(
fn=get_data,
inputs=[],
outputs="text",
description="get_data, ์๊ฐํ์ฉ ๋ชจ๋ ๋ฐ์ดํฐ ๋ฐํ. gpu๊ธฐ์ฌ ๋ชฉ๋ก, total/used, chain \n /run/predict_7",
)
demo.queue(max_size=32).launch(enable_queue=True) |