File size: 3,044 Bytes
c2f1466 722ab73 c2f1466 40641cd cf7a07e da9b438 7192ffe da9b438 112c4f1 e846f7d c2f1466 c374d69 c2f1466 da9b438 6392832 6b65fd5 447a98e 6b65fd5 d6a0df6 6b65fd5 95f3d09 c2f1466 eafce96 c2f1466 4d99237 47bd74d 9eb39ef 02dc7d3 c2f1466 6880e23 4042f12 c661741 c374d69 334a56d 21c3384 bc406e3 c374d69 c2f1466 4d99237 6b65fd5 c2f1466 5be15aa 3104338 5be15aa 6872135 fa7c34d 5be15aa 3104338 5be15aa 3104338 5be15aa 3104338 5be15aa 3104338 0de7e55 aba9039 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import gradio as gr
from gradio_client import Client as GrClient
import inspect
from gradio import routes
from typing import List, Type
from aiogoogletrans import Translator
import requests, os, re, asyncio
loop = asyncio.get_event_loop()
gradio_client = GrClient(os.environ.get('GrClient_url2'))
translator = Translator()
# Monkey patch
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
# App code
def mbti(x):
t = loop.run_until_complete(translator.translate(x, src='ko', dest='en'))
str_trans = re.sub('[-=+,#/\?:^.@*\"β»~γ!γβ|\(\)\[\]`\'β¦γ\β\β\βΒ·]', '', t.text)
result = gradio_client.predict(
str_trans, # str representing input in 'User input' Textbox component
fn_index=2
)
r = sorted(eval(result), key=lambda x : x['score'], reverse=True)
return r
def chat(x):
x = f"{x}"
result = gradio_client.predict(
x,# str representing input in 'User input' Textbox component
0.92, # float, representing input in 'Top-p (nucleus sampling)' Slider component
40, # int, representing input in 'Top-k (nucleus sampling)' Slider component
0.85, # float, representing input in 'Temperature' Slider component
20, # int, representing input in 'Max New Tokens' Slider component
1.08, # float, representing input in 'repetition_penalty' Slider component
fn_index=0
)
result = str(result)
output = result[len(x)-4:]
output = re.sub('νν','γ
γ
', output)
output = output.split('<|endoftext|>')[0]
output = output.split('\n')[0]
output = re.sub('[=+#/\:@*\"β»γγβ|\\\<\>\(\)\[\]`\'β¦γ\β\β\βΒ·]', ' ', output)
output = re.sub('[a-zA-Z]',' ',output)
print(x)
return output
def yn(x):
result = gradio_client.predict(
x, # str representing input in 'User input' Textbox component
fn_index=1
)
return result
with gr.Blocks() as demo:
aa = gr.Interface(
fn=chat,
inputs="text",
outputs="text",
description="chat",
examples= [[f"\nfriend: λλ κΏμ΄ λμΌ? \n\n### \nyou: "],[f"\nyou: λλ λ¬΄μ¨ μμ κ°μ₯ μ’μν΄? \nfriend: κΈμ λλ? \n\n### \nyou: "]]
)
bb = gr.Interface(
fn=mbti,
inputs="text",
outputs="text",
description="mbti"
)
cc = gr.Interface(
fn=yn,
inputs="text",
outputs="text",
description="yn"
)
demo.queue(max_size=32).launch(enable_queue=True) |