Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,47 @@
|
|
1 |
import gradio
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
gradio_interface = gradio.Interface(
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
["Jill"],
|
12 |
["Sam"]
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
)
|
18 |
gradio_interface.launch()
|
|
|
1 |
import gradio
|
2 |
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
|
6 |
+
|
7 |
+
MODEL_NAME = "arnir0/Tiny-LLM"
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
11 |
+
|
12 |
+
def generate_text(prompt, model, tokenizer, max_length=4096, temperature=0.8, top_k=50, top_p=0.95):
|
13 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
14 |
+
|
15 |
+
outputs = model.generate(
|
16 |
+
inputs,
|
17 |
+
max_length=max_length,
|
18 |
+
temperature=temperature,
|
19 |
+
top_k=top_k,
|
20 |
+
top_p=top_p,
|
21 |
+
do_sample=True
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
return generated_text
|
27 |
+
|
28 |
+
|
29 |
+
def my_inference_function(text):
|
30 |
+
prompt = f"Summary the context below\n\n{text}"
|
31 |
+
generated_text = generate_text(prompt, model, tokenizer)
|
32 |
+
|
33 |
+
return generated_text[len(prompt):]
|
34 |
|
35 |
gradio_interface = gradio.Interface(
|
36 |
+
fn=my_inference_function,
|
37 |
+
inputs="text",
|
38 |
+
outputs="text",
|
39 |
+
examples=[
|
40 |
["Jill"],
|
41 |
["Sam"]
|
42 |
+
],
|
43 |
+
title="REST API with Gradio and Huggingface Spaces",
|
44 |
+
description="This is a demo of how to build an AI powered REST API with Gradio and Huggingface Spaces – for free! Based on [this article](https://www.tomsoderlund.com/ai/building-ai-powered-rest-api). See the **Use via API** link at the bottom of this page.",
|
45 |
+
article="© Tom Söderlund 2022"
|
46 |
)
|
47 |
gradio_interface.launch()
|