Spaces:
Runtime error
Runtime error
File size: 5,369 Bytes
e05abd0 672fa81 edadbff ffacbee edadbff e05abd0 edadbff 2aec54c edadbff 012a8ca 057af42 012a8ca edadbff 012a8ca edadbff 012a8ca edadbff 012a8ca 3efa022 012a8ca 057af42 edadbff 08488e6 012a8ca 8fccea5 012a8ca 5dcef8a 012a8ca 057af42 012a8ca 08488e6 012a8ca edadbff 012a8ca edadbff e05abd0 012a8ca 8151f8b edadbff e05abd0 08f3fa6 82a0bb9 11504db 445dc56 edadbff 012a8ca edadbff 3e9caff edadbff a1f109b 07b73da 445dc56 d8ebd16 6794548 3e9caff 6794548 82a0bb9 07b73da 3338882 8151f8b 012a8ca 82a0bb9 07b73da 3338882 75dfd0c 8151f8b 012a8ca 6de3b6b 7c3c2eb 6de3b6b 8fccea5 c14ef23 a6eaf64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
from transformers import BertTokenizerFast,TFBertForSequenceClassification,TextClassificationPipeline
import numpy as np
import tensorflow as tf
import gradio as gr
import openai
import os
# Sentiment Analysis Pre-Trained Model
model_path = "leadingbridge/sentiment-analysis"
tokenizer = BertTokenizerFast.from_pretrained(model_path)
model = TFBertForSequenceClassification.from_pretrained(model_path, id2label={0: 'negative', 1: 'positive'} )
def sentiment_analysis(text):
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
result = pipe(text)
return result
# Open AI Chatbot Model
openai.api_key = os.environ['openai_api']
def openai_chatbot(prompt):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role":"system","content":"You are a general chatbot that can answer anything"},
{"role":"user","content":prompt}
],
temperature=0.8,
max_tokens=3000,
top_p=1,
frequency_penalty=0,
presence_penalty=0.6
)
return response.choices[0].message.content
def openai_translation_ec(prompt):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role":"system","content":"Translate the article to Chinese:"},
{"role":"user","content":prompt}
],
temperature=0.8,
max_tokens=3000,
top_p=1,
frequency_penalty=0,
presence_penalty=1
)
return response.choices[0].message.content
def openai_translation_ce(prompt):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role":"system","content":"Translate the article to English:"},
{"role":"user","content":prompt}
],
temperature=0.8,
max_tokens=3000,
top_p=1,
frequency_penalty=0,
presence_penalty=1
)
return response.choices[0].message.content
def chatgpt_clone(input, history):
history = history or []
s = list(sum(history, ()))
s.append(input)
inp = ' '.join(s)
output = openai_chatbot(inp)
history.append((input, output))
return history, history
"""# **Gradio Model**"""
# Gradio Output Model
with gr.Blocks() as demo:
gr.Markdown('Welcome to the Chinese NLP Demo! Please select a model tab to interact with:')
with gr.Tab("🗣️Chatbot"):
gr.Markdown("""<h4><center>🗣️Chatbot</center></h4>""")
gr.Markdown("This is a Chinese chatbot powered by the OpenAI language model. Enter your message below in Chinese and the chatbot will respond.")
chatbot = gr.Chatbot()
message = gr.Textbox(placeholder="You can discuss any topic with the Chinese Chatbot assistant by typing Chinese in here")
state = gr.State()
submit = gr.Button("Send")
submit.click(chatgpt_clone, inputs=[message, state], outputs=[chatbot, state])
with gr.Tab("🤗Sentiment Analysis"):
gr.Markdown("""<h3><center>🤗Sentiment Analysis</center></h3>""")
gr.Markdown("This is a self-trained fine-tuned model using Chinese BERT for sentiment analysis. Enter a sentence in Chinese in the input box and click the 'proceed' button to get the sentiment analysis result.")
inputs = gr.Textbox(placeholder="Type a Chinese sentence here, either positive or negative in sentiment.")
outputs = gr.Textbox(label="Sentiment Analysis")
proceed_button = gr.Button("Proceed")
proceed_button.click(fn=sentiment_analysis, inputs=inputs, outputs=outputs)
with gr.Tab("🀄Chinese Translation"):
gr.Markdown("""<h3><center>🀄Chinese Translation</center></h3>""")
gr.Markdown("🀄This model translate an English sentence to Chinese using the OpenAI engine. Enter an English short sentence in the input box and click the 'Translate' button to get the translation result in Chinese.")
inputs = gr.Textbox(placeholder="Enter a short English sentence to translate to Chinese here.")
outputs = gr.Textbox(label="Translation Result")
proceed_button = gr.Button("Translate")
proceed_button.click(fn=openai_translation_ec, inputs=inputs, outputs=outputs)
with gr.Tab("🔤English Translation"):
gr.Markdown("""<h3><center>🔤English Translation</center></h3>""")
gr.Markdown("🔤This model translate a Chinese sentence to English using the OpenAI engine. Enter a Chinese short sentence in the input box and click the 'Translate' button to get the translation result in English.")
inputs = gr.Textbox(placeholder="Enter a short Chinese sentence to translate to English here.")
outputs = gr.Textbox(label="Translation Result")
proceed_button = gr.Button("Translate")
proceed_button.click(fn=openai_translation_ce, inputs=inputs, outputs=outputs)
gr.Markdown('''
We are happy to share with you some Chinese language models that we've made using NLP. When we looked online, we noticed that there weren't many resources available for Chinese NLP, so we hope that our models can be useful to you.
We want to mention that these models aren't perfect and there is still room for improvement. Because of limited resources, there might be some mistakes or limitations in the models.
However, We hope that you find them helpful and that you can help make them even better.
''')
demo.launch(inline=False) |