Spaces:
Runtime error
Runtime error
File size: 4,430 Bytes
e05abd0 672fa81 edadbff ffacbee edadbff e05abd0 edadbff 8310927 edadbff 0c6360c edadbff 8fccea5 edadbff e05abd0 c14ef23 8151f8b c14ef23 d88c117 c14ef23 8151f8b 3f5673b 8151f8b edadbff e05abd0 3b183e9 a1f109b d8ebd16 edadbff 3e9caff edadbff a1f109b d8ebd16 6794548 3e9caff 6794548 a1f109b d8ebd16 8151f8b a1f109b d8ebd16 75dfd0c 8151f8b be2d5d0 8fccea5 c14ef23 a6eaf64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
from transformers import BertTokenizerFast,TFBertForSequenceClassification,TextClassificationPipeline
import numpy as np
import tensorflow as tf
import gradio as gr
import openai
import os
# Sentiment Analysis Pre-Trained Model
model_path = "leadingbridge/sentiment-analysis"
tokenizer = BertTokenizerFast.from_pretrained(model_path)
model = TFBertForSequenceClassification.from_pretrained(model_path, id2label={0: 'negative', 1: 'positive'} )
def sentiment_analysis(text):
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
result = pipe(text)
return result
# Open AI Chatbot Model
openai.api_key = "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"
start_sequence = "\nAI:"
restart_sequence = "\nHuman: "
prompt = "You can discuss any topic with the Chinese Chatbot assistant by typing Chinese in here"
def openai_create(prompt):
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0.9,
max_tokens=1024,
top_p=1,
frequency_penalty=0,
presence_penalty=0.6,
stop=[" Human:", " AI:"]
)
return response.choices[0].text
def chatgpt_clone(input, history):
history = history or []
s = list(sum(history, ()))
s.append(input)
inp = ' '.join(s)
output = openai_create(inp)
history.append((input, output))
return history, history
# Open AI Chinese Translation Model
def translate_to_chinese(text_to_translate):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Translate this short English sentence into Chinese:\n\n{text_to_translate}\n\n1.",
temperature=0.3,
max_tokens=1024,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
return response.choices[0].text.strip()
# Open AI English Translation Model
def translate_to_english(text_to_translate):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Translate this short Chinese sentence into English:\n\n{text_to_translate}\n\n1.",
temperature=0.3,
max_tokens=1024,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
return response.choices[0].text.strip()
# Gradio Output Model
with gr.Blocks() as demo:
gr.Markdown("Welcome to the Chinese NLP demo! Please select a model tab to interact with: ")
with gr.Tab("🗣️OpenAI Chatbot"):
gr.Markdown("Interact with an OpenAI chatbot that can respond to your messages. Type your message in the input box and click the 'SEND' button to send it to the chatbot.")
chatbot = gr.Chatbot()
message = gr.Textbox(placeholder=prompt)
state = gr.State()
submit = gr.Button("Send")
submit.click(chatgpt_clone, inputs=[message, state], outputs=[chatbot, state])
with gr.Tab("🤗Sentiment Analysis"):
gr.Markdown("Perform sentiment analysis on a Chinese sentence. Enter a sentence in Chinese in the input box and click the 'proceed' button to get the sentiment analysis result.")
inputs = gr.Textbox(placeholder="Type a Chinese sentence here, either positive or negative in sentiment.")
outputs = gr.Textbox(label="Sentiment Analysis")
proceed_button = gr.Button("Proceed")
proceed_button.click(fn=sentiment_analysis, inputs=inputs, outputs=outputs)
with gr.Tab("🀄Translation to Chinese"):
gr.Markdown("Translate an English sentence to Chinese. Enter an English sentence in the input box and click the 'Translate' button to get the translation result in Chinese.")
inputs = gr.Textbox(placeholder="Enter a short English sentence to translate to Chinese here.")
outputs = gr.Textbox(label="Translation Result")
proceed_button = gr.Button("Translate")
proceed_button.click(fn=translate_to_chinese, inputs=inputs, outputs=outputs)
with gr.Tab("🔤Translation to English"):
gr.Markdown("Translate a Chinese sentence to English. Enter a Chinese sentence in the input box and click the 'Translate' button to get the translation result in English.")
inputs = gr.Textbox(placeholder="Enter a short Chinese sentence to translate to English here.")
outputs = gr.Textbox(label="Translation Result")
proceed_button = gr.Button("Translate")
proceed_button.click(fn=translate_to_english, inputs=inputs, outputs=outputs)
demo.launch(inline=False) |