Spaces:
Runtime error
Runtime error
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +73 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,75 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
5 |
+
from sklearn.ensemble import RandomForestRegressor
|
6 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
7 |
+
|
8 |
+
# URL to the Excel dataset on Hugging Face
|
9 |
+
data_url = "https://huggingface.co/datasets/leadingbridge/flat/resolve/main/NorthPoint30.xlsx"
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def load_and_train_model():
|
13 |
+
df = pd.read_excel(data_url, engine="openpyxl")
|
14 |
+
|
15 |
+
# Drop columns that are not needed for prediction
|
16 |
+
cols_to_drop = ['Usage', 'Address', 'PricePerSquareFeet', 'InstrumentDate', 'Floor', 'Unit']
|
17 |
+
df.drop(columns=cols_to_drop, inplace=True, errors='ignore')
|
18 |
+
|
19 |
+
# Rename useful columns for consistency
|
20 |
+
df.rename(columns={"Floor.1": "Floor", "Unit.1": "Unit"}, inplace=True)
|
21 |
+
|
22 |
+
required_columns = [
|
23 |
+
'District', 'PriceInMillion', 'Longitude', 'Latitude',
|
24 |
+
'Floor', 'Unit', 'Area', 'Year', 'WeekNumber'
|
25 |
+
]
|
26 |
+
if not all(col in df.columns for col in required_columns):
|
27 |
+
raise ValueError("Dataset is missing one or more required columns.")
|
28 |
+
|
29 |
+
feature_names = ['District', 'Longitude', 'Latitude', 'Floor', 'Unit', 'Area', 'Year', 'WeekNumber']
|
30 |
+
X = df[feature_names]
|
31 |
+
y = df['PriceInMillion']
|
32 |
+
|
33 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
34 |
+
|
35 |
+
rf_param_grid = {
|
36 |
+
'n_estimators': [50, 100, 150],
|
37 |
+
'max_depth': [4, 6, 8],
|
38 |
+
'max_features': ['sqrt', 'log2', 3],
|
39 |
+
'random_state': [42]
|
40 |
+
}
|
41 |
+
|
42 |
+
rf_grid = GridSearchCV(RandomForestRegressor(), rf_param_grid, refit=True, verbose=1, cv=5, error_score='raise')
|
43 |
+
rf_grid.fit(X_train, y_train)
|
44 |
+
|
45 |
+
model = rf_grid.best_estimator_
|
46 |
+
return model, feature_names
|
47 |
+
|
48 |
+
@st.cache_data
|
49 |
+
def predict_price(model, feature_names, new_data):
|
50 |
+
new_data_df = pd.DataFrame([new_data], columns=feature_names)
|
51 |
+
prediction = model.predict(new_data_df)
|
52 |
+
return prediction[0]
|
53 |
+
|
54 |
+
def main():
|
55 |
+
st.title("PROPERTY PRICE PREDICTION TOOL (Streamlit Version)")
|
56 |
+
st.markdown("Predict the price of a new property based on District, Longitude, Latitude, Floor, Unit, Area, Year, and Week Number.")
|
57 |
+
|
58 |
+
model, feature_names = load_and_train_model()
|
59 |
+
|
60 |
+
district = st.selectbox("District (1 = Taikoo Shing, 2 = Mei Foo Sun Chuen, 3 = South Horizons, 4 = Whampoa Garden)", list(range(1, 9)))
|
61 |
+
longitude = st.number_input("Longitude", value=114.200)
|
62 |
+
latitude = st.number_input("Latitude", value=22.300)
|
63 |
+
floor = st.selectbox("Floor", list(range(1, 71)))
|
64 |
+
unit = st.selectbox("Unit (e.g., A=1, B=2, C=3, ...)", list(range(1, 31)))
|
65 |
+
area = st.slider("Area (in sq. feet)", min_value=137, max_value=5000, value=300)
|
66 |
+
year = st.selectbox("Year", [2024, 2025])
|
67 |
+
weeknumber = st.selectbox("Week Number", list(range(1, 53)))
|
68 |
+
|
69 |
+
if st.button("Predict"):
|
70 |
+
new_data = [district, longitude, latitude, floor, unit, area, year, weeknumber]
|
71 |
+
prediction = predict_price(model, feature_names, new_data)
|
72 |
+
st.success(f"🏠 Estimated Price: **${prediction:,.2f} Million**")
|
73 |
|
74 |
+
if __name__ == "__main__":
|
75 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|