File size: 4,585 Bytes
34dad03
 
65e7391
 
34dad03
522a27f
34dad03
65e7391
9d3fa20
 
c3e1f9c
 
 
 
1fe3879
9d3fa20
65e7391
 
9d3fa20
 
65e7391
 
 
 
 
9d3fa20
fa2dcad
9d3fa20
 
 
fa2dcad
 
 
65e7391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f518f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3fa20
 
 
 
65e7391
 
 
 
 
 
 
 
 
 
522a27f
f91c350
4465048
f91c350
 
 
4465048
 
f91c350
 
 
 
4465048
 
 
 
 
 
f91c350
 
34dad03
 
2f518f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
import pandas as pd
from datetime import datetime
import pytz  # This library is used for timezone conversions

def order_csv(file, supplier, order_number):
    df = pd.read_csv(file.name)

    # Define supplier-specific filters
    vendor_filters = {
        "Supplier 1": lambda df: df[~df['Vendor'].isin(["Seed", "EverColor", "Candy Magic", "OLENS", "Fairy", "Shobido", "Geo Medical", "Ann365", "Lenstown", "LensVery"])],
        "Supplier 2": lambda df: df[df['Vendor'].isin(["Candy Magic", "OLENS", "Fairy", "Shobido"])],
        "Supplier 3": lambda df: df[df['Vendor'].isin(["Seed", "EverColor"])],
        "Supplier 4": lambda df: df[df['Vendor'].isin(["Geo Medical", "Lenstown"])],
        "Supplier 5": lambda df: df[df['Vendor'].isin(["Ann365", "LensVery"])]
    }

    # Apply supplier filter if selected
    if supplier and supplier in vendor_filters:
        df = vendor_filters[supplier](df)

    # Filter based on order number
    if order_number:
        df = df[df['Order Number'] >= int(order_number)]

    # Specify columns for output
    columns_to_include = [
        'Order Number', 'Quantity', 'Product Title', 'Product Option Name',
        'Product Option Value', 'Order Line item Properties 2 Name',
        'Order Line item Properties 2 Value', 'Order Line item Properties 3 Name',
        'Order Line item Properties 3 Value'
    ]
    download_df = df[columns_to_include]

    # Get the current date in Hong Kong Time
    hk_timezone = pytz.timezone("Asia/Hong_Kong")
    current_date_hk = datetime.now(hk_timezone).strftime("%y%m%d")

    # Set output file name based on the selected supplier
    if supplier == "Supplier 1":
        output_file = f"Leading Bridge Order {current_date_hk}.xlsx"
    elif supplier == "Supplier 2":
        output_file = f"Leading Bridge Order {current_date_hk}-Ammu.xlsx"
    else:
        output_file = "filtered_output.xlsx"  # Default file name for other cases

    # Save filtered DataFrame as Excel file
    download_df.to_excel(output_file, index=False)

    # Adjust column widths using openpyxl
    from openpyxl import load_workbook
    wb = load_workbook(output_file)
    ws = wb.active

    for column_cells in ws.columns:
        max_length = 0
        # Get the column letter (e.g. 'A', 'B', etc.)
        column_letter = column_cells[0].column_letter
        for cell in column_cells:
            if cell.value is not None:
                cell_length = len(str(cell.value))
                if cell_length > max_length:
                    max_length = cell_length
        adjusted_width = max_length + 2  # Add a little extra space
        ws.column_dimensions[column_letter].width = adjusted_width

    wb.save(output_file)
    return df, output_file

# Define the main block for the interface
with gr.Blocks() as demo:
    with gr.Row():
        file_input = gr.File(label="Upload CSV")
        supplier_input = gr.Dropdown(choices=["", "Supplier 1", "Supplier 2", "Supplier 3", "Supplier 4", "Supplier 5"], label="Select Supplier")
        order_number_input = gr.Number(label="Minimum Order Number", precision=0)
        load_button = gr.Button("Load Data")
    with gr.Row():
        output_df = gr.DataFrame()
        output_file = gr.File(label="Download Filtered CSV")

    # Bind the function to inputs and outputs using the button
    load_button.click(fn=order_csv, inputs=[file_input, supplier_input, order_number_input], outputs=[output_df, output_file])
    
    # Updated hyperlink block with separate sections for Shipping and Administration Tools.
    gr.HTML(
        """
        <div style="text-align: center; font-size: 16px; margin-top: 20px;">
            <h3>Shipping Tools</h3>
            <a href="https://huggingface.co/spaces/leadingbridge/shipping-dhl-e-commerce">DHL</a> | 
            <a href="https://huggingface.co/spaces/leadingbridge/shipping-ec-ship">EC-Ship</a> | 
            <a href="https://huggingface.co/spaces/leadingbridge/shipping-fedex">Fedex</a> | 
            <a href="https://huggingface.co/spaces/leadingbridge/shipping-UPS">UPS</a>
        </div>
        <div style="text-align: center; font-size: 16px; margin-top: 20px;">
            <h3>Administration Tools</h3>
            <a href="https://huggingface.co/spaces/leadingbridge/email-template">Email Template</a> | 
            <a href="https://huggingface.co/spaces/leadingbridge/product-feed">Google Merchant</a> | 
            <a href="https://huggingface.co/spaces/leadingbridge/tss-order">Order Processing</a>
        </div>
        """
    )

# Run the interface
demo.launch()