Spaces:
Sleeping
Sleeping
File size: 19,056 Bytes
2680a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import ast
from loguru import logger
import sys
import io
import json
import re
import traceback
import os
from timeout_utils import function_with_timeout
helpers = [
"import math",
"import re",
"import sys",
"import copy",
"import datetime",
"import itertools",
"import collections",
"import heapq",
"import statistics",
"import functools",
"import hashlib",
"import numpy",
"import numpy as np",
"import string",
"from typing import *",
"from collections import *",
"import heapq as hq",
"from itertools import *",
"from math import *",
"from statistics import *",
"from functools import *",
"from collections import *",
"from datetime import *",
"from copy import *",
]
STARTING_CODE = "\n".join(helpers)
def create_dependency_graph(functions):
graph = {func_name: set() for func_name in functions}
for func_name, func_code in functions.items():
for other_func in functions:
if other_func in func_code and other_func != func_name:
graph[func_name].add(other_func)
return graph
def topological_sort(graph):
visited = set()
stack = []
def dfs(node):
visited.add(node)
for neighbor in graph[node]:
if neighbor not in visited:
dfs(neighbor)
stack.append(node)
for node in graph:
if node not in visited:
dfs(node)
return stack
def merge_changes_to_parents(func_name, dependency_graph, functions):
# Update the function in the functions dictionary
logger.info(f"Updating function {func_name} in the functions dictionary")
# For any function that calls the modified function, update its code
for parent, children in dependency_graph.items():
if func_name in children:
parent_code = functions[parent]
updated_parent_code = parent_code.replace(func_name, f"{func_name}")
functions[parent] = updated_parent_code
logger.info(f"Updated references to {func_name} in parent function {parent}")
# Regenerate the full code
full_code = "\n\n".join(functions.values())
logger.info(f"Merged changes from {func_name} to all relevant functions")
return full_code
def extract_functions(code):
logger.info("Extracting functions from code")
tree = ast.parse(code)
functions = {}
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef):
func_code = ast.get_source_segment(code, node)
functions[node.name] = func_code
logger.info(f"Extracted {len(functions)} functions: {', '.join(functions.keys())}")
return functions
def extract_code_blocks(response):
"""Extract all code blocks from the response."""
return re.findall(r'```python\s*(.*?)\s*```', response, re.DOTALL)
def extract_function(code_block, function_name):
"""Extract a specific function from a code block."""
try:
tree = ast.parse(code_block)
except:
logger.error(f"Failed to parse code block for function: {function_name} from\n{code_block}")
return None
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef) and node.name == function_name:
return ast.get_source_segment(code_block, node)
return None
def evaluate_given_tests(code, given_tests, max_memory=100 * 1024 * 1024):
test_code = f"{STARTING_CODE}\n\n{code}\n\n{given_tests}"
try:
function_with_timeout(exec, (test_code, globals()), timeout=10, max_memory=max_memory)
return True
except TimeoutError as e:
logger.error(f"Timeout Error: {str(e)}")
except MemoryError as e:
logger.error(f"Memory Error: {str(e)}")
except AssertionError as e:
logger.error(f"Assertion Error: {str(e)}")
except Exception as e:
logger.error(f'Error: {str(e)}')
logger.error(f'Traceback: {traceback.format_exc()}')
return False
def evaluate_simple(code, entry_point, all_test, max_memory=100 * 1024 * 1024):
'''
directly concatenate the code and test code to evaluate on the private test cases
'''
test_code = f"{STARTING_CODE}\n\n{code}\n\n{all_test}\n\ncheck({entry_point})"
try:
function_with_timeout(exec, (test_code, globals()), timeout=10, max_memory=max_memory)
return True
except TimeoutError as e:
logger.error(f"Timeout Error: {str(e)}")
except MemoryError as e:
logger.error(f"Memory Error: {str(e)}")
except AssertionError as e:
logger.error(f"Assertion Error: {str(e)}")
except Exception as e:
logger.error(f'Error: {str(e)}')
logger.error(f'Traceback: {traceback.format_exc()}')
return False
def evaluate(code, entry_point, testcase, return_trace=False):
logger.info(f"Evaluating {entry_point} with testcase: {testcase['input']}")
# Extract all functions from the code
try:
functions = extract_functions(code)
except:
logger.error(f"Failed to extract functions from code {code}")
# import pdb
# pdb.set_trace()
logger.info(f"Extracted functions: {', '.join(functions.keys())}")
# filter the functions that are called in the entry_point function
entry_point_function = functions[entry_point]
# entry_point_tree = ast.parse(entry_point_function)
# entry_point_calls = [node.func.id for node in ast.walk(entry_point_tree) if isinstance(node, ast.Call)]
# functions = {name: func for name, func in functions.items() if name in entry_point_calls}
# directly search for the string
functions = {name: func for name, func in functions.items() if name in entry_point_function}
logger.info(f"Filtered functions: {', '.join(functions.keys())}")
# Combine all functions into a single code block
full_code = "\n\n".join(functions.values())
# logger.info(f"Code being evaluated:\n{full_code}")
# Convert the input to a string representation that can be safely evaluated
input_repr = repr(testcase['input'])
if isinstance(testcase['input'], dict):
# Sometimes the input is a dictionary, which needs to be unpacked as keyword arguments
test_code = f'''{full_code}\n\nprint(repr({entry_point}(**{input_repr})))'''
else:
test_code = f'''{full_code}\n\nprint(repr({entry_point}({input_repr})))'''
# add the starting code to the test code
test_code = f"{STARTING_CODE}\n\n{test_code}"
old_stdout = sys.stdout
new_stdout = io.StringIO()
sys.stdout = new_stdout
try:
function_with_timeout(exec, (test_code, globals()), timeout=10)
output = new_stdout.getvalue().strip()
sys.stdout = old_stdout
# Convert both expected and actual output to the same type for comparison
expected_output = repr(testcase["expected_output"])
# Update actual_output before assertion
testcase['actual_output'] = ast.literal_eval(output)
assert output == expected_output, f"Expected {expected_output}, but got {output}"
logger.info(f'Test case passed: {testcase}')
logger.info(f'Expected: {expected_output}, Got: {output}')
return True, testcase
except TimeoutError:
logger.error(f'Test case failed: {testcase}')
logger.error(f"Timeout Error: {str(e)}")
except AssertionError as e:
logger.error(f'Test case failed: {testcase}')
logger.error(str(e))
except Exception as e:
logger.error(f'Test case failed: {testcase}')
logger.error(f'Error: {str(e)}')
logger.error(f'Traceback: {traceback.format_exc()}')
testcase['actual_output'] = str(e)
if return_trace:
testcase['traceback'] = traceback.format_exc()
finally:
sys.stdout = old_stdout
return False, testcase
def extract_json_from_string(s):
# search for all the ```json blocks
matches = re.findall(r'```json\s*(.*?)\s*```', s, re.DOTALL)
if matches:
return matches[-1]
return None
def parse_json_response(response):
json_str = extract_json_from_string(response)
if json_str:
try:
# Standard JSON corrections
json_str = json_str.strip().replace("True", "true")
json_str = json_str.replace("False", "false")
json_str = json_str.replace("'", '"')
json_str = json_str.replace("None", "null")
# Convert tuple notation to list notation
json_str = re.sub(r'\((-?\d+),\s*(-?\d+)\)', r'[\1, \2]', json_str)
logger.info(f"Extracted JSON string: {json_str}")
try:
return json.loads(json_str)
except:
# remove comments (for mistral model)
json_str = re.sub(r'#.*', '', json_str)
return json.loads(json_str)
except json.JSONDecodeError as e:
logger.error(f"Failed to parse extracted JSON: {json_str}")
logger.error(f"JSONDecodeError: {str(e)}")
# import pdb
# pdb.set_trace()
else:
logger.error("No JSON object found in the response")
return None
def get_dependency_graph_str(graph, root=None, prefix="", is_last=True):
result = []
if root is None:
# Collect all roots if no specific root is given
roots = [node for node in graph if not any(node in children for children in graph.values())]
for i, root in enumerate(roots):
result.append(get_dependency_graph_str(graph, root, "", i == len(roots) - 1))
return "\n".join(result)
connector = "βββ " if is_last else "βββ "
result.append(prefix + connector + root)
if root in graph:
children = sorted(graph[root])
new_prefix = prefix + (" " if is_last else "β ")
for i, child in enumerate(children):
is_last_child = (i == len(children) - 1)
result.append(get_dependency_graph_str(graph, child, new_prefix, is_last_child))
return "\n".join(result)
def extract_functions_from_code(node, parent=None):
""" Recursively extract functions and set parents. """
if isinstance(node, ast.Module):
for n in node.body:
extract_functions_from_code(n, parent=node)
elif isinstance(node, ast.FunctionDef):
node.parent = parent
if parent is not None and isinstance(parent, (ast.FunctionDef, ast.Module)):
parent.children.append(node)
for n in node.body:
extract_functions_from_code(n, parent=node)
def split_nested_functions(code):
tree = ast.parse(code)
for node in ast.walk(tree):
node.children = []
extract_functions_from_code(tree)
flat_functions = []
def flatten_functions(node):
if isinstance(node, ast.FunctionDef):
flat_functions.append(node)
# Remove nested function definitions from the body
node.body = [n for n in node.body if not isinstance(n, ast.FunctionDef)]
for child in node.children:
flatten_functions(child)
flatten_functions(tree)
# Function to correct indentation for function docstrings
def correct_indentation(functions):
for func in functions:
# Get existing docstring if present
docstring = ast.get_docstring(func)
if docstring:
# Replace existing docstring node with corrected indentation
corrected_docstring = "\n".join([line if line.strip() != "" else "" for line in docstring.split("\n")])
func.body[0].value.s = corrected_docstring
correct_indentation(flat_functions)
return '\n\n'.join(ast.unparse(f).strip() for f in flat_functions)
def remove_unused_functions(code, entry_point):
tree = ast.parse(code)
function_names = {node.name for node in ast.walk(tree) if isinstance(node, ast.FunctionDef)}
function_calls = set()
class FunctionCallVisitor(ast.NodeVisitor):
def visit_Call(self, node):
if isinstance(node.func, ast.Name) and node.func.id in function_names:
function_calls.add(node.func.id)
self.generic_visit(node)
FunctionCallVisitor().visit(tree)
used_functions = set()
def mark_used(func_name):
if func_name not in used_functions:
used_functions.add(func_name)
for node in ast.walk(tree):
if isinstance(node, ast.FunctionDef) and node.name == func_name:
FunctionCallVisitor().visit(node)
for call in function_calls:
mark_used(call)
mark_used(entry_point)
# only keep the functions that are used
tree.body = [node for node in tree.body if not isinstance(node, ast.FunctionDef) or node.name in used_functions]
all_unused_functions = function_names - used_functions
# convert back to code
return ast.unparse(tree), all_unused_functions
def test_remove_unused_functions():
code = '''
def rolling_max(numbers: List[int]) -> List[int]:
"""From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling_max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]"""
(max_so_far, rolling_max_list) = initialize_max_and_list(numbers)
for num in numbers[1:]:
(max_so_far, rolling_max_list) = update_max_and_list(max_so_far, num, rolling_max_list)
return rolling_max_list
def initialize_max_and_list(numbers: List[int]) -> Tuple[int, List[int]]:
max_so_far = numbers[0]
rolling_max_list = [max_so_far]
return (max_so_far, rolling_max_list)
def update_max_and_list(max_so_far: int, num: int, rolling_max_list: List[int]) -> Tuple[int, List[int]]:
max_so_far = max(max_so_far, num)
rolling_max_list.append(max_so_far)
return (max_so_far, rolling_max_list)
def clean_data(data: List[str]) -> List[str]:
return [d.strip() for d in data]
'''.strip()
entry_point = "rolling_max"
logger.info(f"Original code:\n{code}")
output, unused_functions = remove_unused_functions(code, entry_point)
logger.info(f"Unused functions: {unused_functions}")
logger.info(f"Cleaned code:\n{output}")
def test_split_nested_functions():
# The initial code provided by the user
code = '''
def find_suffix_start(s: str) -> int:
for i in range(len(s)):
if is_palindrome(s[i:]):
return i
return 0
def make_palindrome(string: str) -> str:
"""This function takes a string and returns a palindrome by appending the reverse of the prefix of the string that makes it a palindrome."""
def is_palindrome(s: str) -> bool:
"""
This function takes a string and returns True if it is a palindrome, False otherwise.
"""
def compare(s: str) -> bool:
"""
This function takes a string and returns True if it is a palindrome, False otherwise.
inner function
"""
return s == s[::-1]
return compare(s)
suffix_start = find_suffix_start(string)
return string + string[:suffix_start][::-1]
'''.strip()
# Splitting the nested functions and correcting the indentation
output = split_nested_functions(code)
print(output)
def test_parse_json_response():
response = """
**All Test Cases:**
```json
{
"test_cases": [
{"input": {"date": "03-11-2000"}, "expected_output": [11, 3, 2000]},
{"input": {"date": "15-01-2012"}, "expected_output": [15, 1, 2012]},
{"input": {"date": "04-0-2040"}, "expected_output": None},
{"input": {"date": "06-04-2020"}, "expected_output": [4, 6, 2020]},
{"input": {"date": "06/04/2020"}, "expected_output": None}
]
}
```
""".strip()
parsed_json = parse_json_response(response)
print(parsed_json)
def insert_docstring(code, docstring):
# surround the docstring with triple quotes
docstring = f'"""{docstring}"""'
lines = code.split('\n')
# Find the first non-empty line
first_line = next((i for i, line in enumerate(lines) if line.strip()), 0)
# Determine the indentation of the first line
indentation = len(lines[first_line]) - len(lines[first_line].lstrip())
# Find the 'def' line
def_line = next((i for i, line in enumerate(lines) if line.strip().startswith('def ')), first_line)
# Insert the docstring after the 'def' line, maintaining indentation
docstring_lines = [' ' * (indentation + 4) + line for line in docstring.split('\n')]
lines = lines[:def_line+1] + docstring_lines + lines[def_line+1:]
return '\n'.join(lines)
def parse_transcoder_problem_content(problem):
# Extract the last group of content between [c++] and [python]
cpp_code = problem["prompt"].split("[c++]")[-1].split("[python]")[0].strip()
full_question = f'This function is translated into Python from the following C++ code: \n{cpp_code}\n'
try:
# Try to parse the existing solution
tree = ast.parse(problem["solution"])
# Create a new docstring node
docstring = ast.Expr(ast.Str(full_question))
# Find the first function definition in the AST
for node in tree.body:
if isinstance(node, ast.FunctionDef):
# Insert the docstring at the beginning of the function body
node.body.insert(0, docstring)
break
else:
# If no function definition is found, add the docstring at the end of the module
tree.body.append(docstring)
# Convert the modified AST back to source code
modified_solution = ast.unparse(tree)
except SyntaxError:
# If there's a syntax error, use the string-based method
logger.debug(f"Failed to parse solution for problem: {problem['task_id']}")
modified_solution = insert_docstring(problem["solution"], full_question)
logger.debug(f"Modified solution: {modified_solution}")
# Update the problem dictionary with the modified solution
problem["solution"] = modified_solution
return problem
def test_parse_transcoder_problem_content():
input_seeds = "input_data/transcoder/seed/starcoder/seed.jsonl"
with open(input_seeds, "r") as f:
problems = [json.loads(line) for line in f]
for problem in problems:
try:
result = parse_transcoder_problem_content(problem)
except Exception as e:
logger.error(f"Failed to parse solution for problem: {problem['task_id']}")
logger.error(f"The solution is: \n{problem['solution']}")
logger.error(f"Error: {str(e)}")
logger.info("Successfully parsed all solutions")
# show an example
logger.info(f"Example result: {result['solution']}")
if __name__ == "__main__":
# test_split_nested_functions()
# test_parse_json_response()
# test_remove_unused_functions()
test_parse_transcoder_problem_content()
|