File size: 7,090 Bytes
4531600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
import cv2
from inference_sdk import InferenceHTTPClient
import matplotlib.pyplot as plt
import base64

# Load model and tokenizer
@st.cache_resource
def load_model():
    model, preprocess_val, tokenizer = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    return model, preprocess_val, tokenizer, device

model, preprocess_val, tokenizer, device = load_model()

# Load and process data
@st.cache_data
def load_data():
    with open('musinsa-final.json', 'r', encoding='utf-8') as f:
        return json.load(f)

data = load_data()

# Helper functions
@st.cache_data
def download_and_process_image(image_url):
    try:
        response = requests.get(image_url)
        response.raise_for_status()  # Raises an HTTPError for bad responses
        image = Image.open(BytesIO(response.content))
        
        # Convert image to RGB mode if it's in RGBA mode
        if image.mode == 'RGBA':
            image = image.convert('RGB')
        
        return image
    except requests.RequestException as e:
        st.error(f"Error downloading image: {e}")
        return None
    except Exception as e:
        st.error(f"Error processing image: {e}")
        return None

def get_image_embedding(image):
    image_tensor = preprocess_val(image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = model.encode_image(image_tensor)
        image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy()

def setup_roboflow_client(api_key):
    return InferenceHTTPClient(
        api_url="https://outline.roboflow.com",
        api_key=api_key
    )

def segment_image(image_path, client):
    try:
        # 이미지 파일 읽기
        with open(image_path, "rb") as image_file:
            image_data = image_file.read()
        
        # 이미지를 base64로 인코딩
        encoded_image = base64.b64encode(image_data).decode('utf-8')
        
        # 원본 이미지 로드
        image = cv2.imread(image_path)
        image = cv2.resize(image, (800, 600))
        mask = np.zeros(image.shape, dtype=np.uint8)
        
        # Roboflow API 호출
        results = client.infer(encoded_image, model_id="closet/1")
        
        # 결과가 이미 딕셔너리인 경우 JSON 파싱 단계 제거
        if isinstance(results, dict):
            predictions = results.get('predictions', [])
        else:
            # 문자열인 경우에만 JSON 파싱
            predictions = json.loads(results).get('predictions', [])
        
        if predictions:
            for prediction in predictions:
                points = prediction['points']
                pts = np.array([[p['x'], p['y']] for p in points], np.int32)
                scale_x = image.shape[1] / results['image']['width']
                scale_y = image.shape[0] / results['image']['height']
                pts = pts * [scale_x, scale_y]
                pts = pts.astype(np.int32)
                pts = pts.reshape((-1, 1, 2))
                cv2.fillPoly(mask, [pts], color=(255, 255, 255))  # White mask
            
            segmented_image = cv2.bitwise_and(image, mask)
        else:
            st.warning("No predictions found in the image. Returning original image.")
            segmented_image = image
        
        return Image.fromarray(cv2.cvtColor(segmented_image, cv2.COLOR_BGR2RGB))
    except Exception as e:
        st.error(f"Error in segmentation: {str(e)}")
        # 원본 이미지를 다시 읽어 반환
        return Image.open(image_path)

@st.cache_data
def process_database_cached(data):
    database_embeddings = []
    database_info = []
    for item in data:
        image_url = item['이미지 링크'][0]
        product_id = item.get('\ufeff상품 ID') or item.get('상품 ID')
        
        image = download_and_process_image(image_url)
        if image is None:
            continue
        
        # Save the image temporarily
        temp_path = f"temp_{product_id}.jpg"
        image.save(temp_path, 'JPEG')
        
        database_info.append({
            'id': product_id,
            'category': item['카테고리'],
            'brand': item['브랜드명'],
            'name': item['제품명'],
            'price': item['정가'],
            'discount': item['할인율'],
            'image_url': image_url,
            'temp_path': temp_path
        })
    
    return database_info

def process_database(client, data):
    database_info = process_database_cached(data)
    database_embeddings = []
    
    for item in database_info:
        segmented_image = segment_image(item['temp_path'], client)
        embedding = get_image_embedding(segmented_image)
        database_embeddings.append(embedding)
    
    return np.vstack(database_embeddings), database_info

# Streamlit app
st.title("Fashion Search App with Segmentation")

# API Key input
api_key = st.text_input("Enter your Roboflow API Key", type="password")

if api_key:
    CLIENT = setup_roboflow_client(api_key)
    
    # Initialize database_embeddings and database_info
    database_embeddings, database_info = process_database(CLIENT, data)

    uploaded_file = st.file_uploader("Choose an image...", type="jpg")
    if uploaded_file is not None:
        image = Image.open(uploaded_file)
        st.image(image, caption='Uploaded Image', use_column_width=True)
        
        if st.button('Find Similar Items'):
            with st.spinner('Processing...'):
                # Save uploaded image temporarily
                temp_path = "temp_upload.jpg"
                image.save(temp_path)
                
                # Segment the uploaded image
                segmented_image = segment_image(temp_path, CLIENT)
                st.image(segmented_image, caption='Segmented Image', use_column_width=True)
                
                # Get embedding for segmented image
                query_embedding = get_image_embedding(segmented_image)
                similar_images = find_similar_images(query_embedding)
                
                st.subheader("Similar Items:")
                for img in similar_images:
                    col1, col2 = st.columns(2)
                    with col1:
                        st.image(img['info']['image_url'], use_column_width=True)
                    with col2:
                        st.write(f"Name: {img['info']['name']}")
                        st.write(f"Brand: {img['info']['brand']}")
                        st.write(f"Category: {img['info']['category']}")
                        st.write(f"Price: {img['info']['price']}")
                        st.write(f"Discount: {img['info']['discount']}%")
                        st.write(f"Similarity: {img['similarity']:.2f}")
else:
    st.warning("Please enter your Roboflow API Key to use the app.")