Spaces:
Runtime error
Runtime error
File size: 7,090 Bytes
4531600 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
import cv2
from inference_sdk import InferenceHTTPClient
import matplotlib.pyplot as plt
import base64
# Load model and tokenizer
@st.cache_resource
def load_model():
model, preprocess_val, tokenizer = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
model, preprocess_val, tokenizer, device = load_model()
# Load and process data
@st.cache_data
def load_data():
with open('musinsa-final.json', 'r', encoding='utf-8') as f:
return json.load(f)
data = load_data()
# Helper functions
@st.cache_data
def download_and_process_image(image_url):
try:
response = requests.get(image_url)
response.raise_for_status() # Raises an HTTPError for bad responses
image = Image.open(BytesIO(response.content))
# Convert image to RGB mode if it's in RGBA mode
if image.mode == 'RGBA':
image = image.convert('RGB')
return image
except requests.RequestException as e:
st.error(f"Error downloading image: {e}")
return None
except Exception as e:
st.error(f"Error processing image: {e}")
return None
def get_image_embedding(image):
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()
def setup_roboflow_client(api_key):
return InferenceHTTPClient(
api_url="https://outline.roboflow.com",
api_key=api_key
)
def segment_image(image_path, client):
try:
# 이미지 파일 읽기
with open(image_path, "rb") as image_file:
image_data = image_file.read()
# 이미지를 base64로 인코딩
encoded_image = base64.b64encode(image_data).decode('utf-8')
# 원본 이미지 로드
image = cv2.imread(image_path)
image = cv2.resize(image, (800, 600))
mask = np.zeros(image.shape, dtype=np.uint8)
# Roboflow API 호출
results = client.infer(encoded_image, model_id="closet/1")
# 결과가 이미 딕셔너리인 경우 JSON 파싱 단계 제거
if isinstance(results, dict):
predictions = results.get('predictions', [])
else:
# 문자열인 경우에만 JSON 파싱
predictions = json.loads(results).get('predictions', [])
if predictions:
for prediction in predictions:
points = prediction['points']
pts = np.array([[p['x'], p['y']] for p in points], np.int32)
scale_x = image.shape[1] / results['image']['width']
scale_y = image.shape[0] / results['image']['height']
pts = pts * [scale_x, scale_y]
pts = pts.astype(np.int32)
pts = pts.reshape((-1, 1, 2))
cv2.fillPoly(mask, [pts], color=(255, 255, 255)) # White mask
segmented_image = cv2.bitwise_and(image, mask)
else:
st.warning("No predictions found in the image. Returning original image.")
segmented_image = image
return Image.fromarray(cv2.cvtColor(segmented_image, cv2.COLOR_BGR2RGB))
except Exception as e:
st.error(f"Error in segmentation: {str(e)}")
# 원본 이미지를 다시 읽어 반환
return Image.open(image_path)
@st.cache_data
def process_database_cached(data):
database_embeddings = []
database_info = []
for item in data:
image_url = item['이미지 링크'][0]
product_id = item.get('\ufeff상품 ID') or item.get('상품 ID')
image = download_and_process_image(image_url)
if image is None:
continue
# Save the image temporarily
temp_path = f"temp_{product_id}.jpg"
image.save(temp_path, 'JPEG')
database_info.append({
'id': product_id,
'category': item['카테고리'],
'brand': item['브랜드명'],
'name': item['제품명'],
'price': item['정가'],
'discount': item['할인율'],
'image_url': image_url,
'temp_path': temp_path
})
return database_info
def process_database(client, data):
database_info = process_database_cached(data)
database_embeddings = []
for item in database_info:
segmented_image = segment_image(item['temp_path'], client)
embedding = get_image_embedding(segmented_image)
database_embeddings.append(embedding)
return np.vstack(database_embeddings), database_info
# Streamlit app
st.title("Fashion Search App with Segmentation")
# API Key input
api_key = st.text_input("Enter your Roboflow API Key", type="password")
if api_key:
CLIENT = setup_roboflow_client(api_key)
# Initialize database_embeddings and database_info
database_embeddings, database_info = process_database(CLIENT, data)
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
if st.button('Find Similar Items'):
with st.spinner('Processing...'):
# Save uploaded image temporarily
temp_path = "temp_upload.jpg"
image.save(temp_path)
# Segment the uploaded image
segmented_image = segment_image(temp_path, CLIENT)
st.image(segmented_image, caption='Segmented Image', use_column_width=True)
# Get embedding for segmented image
query_embedding = get_image_embedding(segmented_image)
similar_images = find_similar_images(query_embedding)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
st.write(f"Category: {img['info']['category']}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
else:
st.warning("Please enter your Roboflow API Key to use the app.") |