leedoming's picture
Update app.py
f0cd321 verified
raw
history blame
9.7 kB
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
import cv2
import chromadb
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
import torch.nn as nn
import warnings
# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning, module="transformers.utils.deprecation")
# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
model, _, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
clip_model, preprocess_val, tokenizer, device = load_clip_model()
# Load SegFormer model
@st.cache_resource
def load_segformer_model():
processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
return model, processor
segformer_model, segformer_processor = load_segformer_model()
# Helper functions
def load_image_from_url(url, max_retries=3):
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert('RGB')
return img
except (requests.RequestException, Image.UnidentifiedImageError) as e:
if attempt < max_retries - 1:
time.sleep(1)
else:
return None
# Load ChromaDB
@st.cache_resource
def load_chromadb():
client = chromadb.PersistentClient(path="./clothesDB")
collection = client.get_collection(name="clothes_items_ver3")
return collection
collection = load_chromadb()
def get_image_embedding(image):
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()
def get_text_embedding(text):
text_tokens = tokenizer([text]).to(device)
with torch.no_grad():
text_features = clip_model.encode_text(text_tokens)
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy()
def get_all_embeddings_from_collection(collection):
all_embeddings = collection.get(include=['embeddings'])['embeddings']
return np.array(all_embeddings)
def get_metadata_from_ids(collection, ids):
results = collection.get(ids=ids)
return results['metadatas']
def find_similar_images(query_embedding, collection, top_k=5):
database_embeddings = get_all_embeddings_from_collection(collection)
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
top_indices = np.argsort(similarities)[::-1][:top_k]
all_data = collection.get(include=['metadatas'])['metadatas']
top_metadatas = [all_data[idx] for idx in top_indices]
results = []
for idx, metadata in enumerate(top_metadatas):
results.append({
'info': metadata,
'similarity': similarities[top_indices[idx]]
})
return results
def segment_clothing(image):
inputs = segformer_processor(images=image, return_tensors="pt")
outputs = segformer_model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0].numpy()
categories = segformer_model.config.id2label
segmented_items = []
for category_id, category_name in categories.items():
if category_id in pred_seg:
mask = (pred_seg == category_id).astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
x, y, w, h = cv2.boundingRect(max(contours, key=cv2.contourArea))
segmented_items.append({
'category': category_name,
'bbox': [x, y, x+w, y+h],
'mask': mask
})
return segmented_items, pred_seg
def crop_image(image, bbox):
return image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
# Streamlit app
st.title("Advanced Fashion Search App")
# Initialize session state
if 'step' not in st.session_state:
st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
st.session_state.query_image_url = ''
if 'segmentations' not in st.session_state:
st.session_state.segmentations = []
if 'selected_category' not in st.session_state:
st.session_state.selected_category = None
# Step-by-step processing
if st.session_state.step == 'input':
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
if st.button("Segment Clothing"):
if st.session_state.query_image_url:
query_image = load_image_from_url(st.session_state.query_image_url)
if query_image is not None:
st.session_state.query_image = query_image
st.session_state.segmentations, st.session_state.pred_seg = segment_clothing(query_image)
if st.session_state.segmentations:
st.session_state.step = 'select_category'
else:
st.warning("No clothing items segmented in the image.")
else:
st.error("Failed to load the image. Please try another URL.")
else:
st.warning("Please enter an image URL.")
elif st.session_state.step == 'select_category':
col1, col2 = st.columns(2)
with col1:
st.image(st.session_state.query_image, caption="Original Image", use_column_width=True)
with col2:
st.image(st.session_state.pred_seg, caption="Segmentation Map", use_column_width=True)
st.subheader("Segmented Clothing Items:")
for segmentation in st.session_state.segmentations:
col1, col2 = st.columns([1, 3])
with col1:
st.write(f"{segmentation['category']}")
with col2:
cropped_image = crop_image(st.session_state.query_image, segmentation['bbox'])
st.image(cropped_image, caption=segmentation['category'], use_column_width=True)
options = [s['category'] for s in st.session_state.segmentations]
selected_option = st.selectbox("Select a category to search:", options)
if st.button("Search Similar Items"):
st.session_state.selected_category = selected_option
st.session_state.step = 'show_results'
elif st.session_state.step == 'show_results':
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
selected_segmentation = next(s for s in st.session_state.segmentations
if s['category'] == st.session_state.selected_category)
cropped_image = crop_image(st.session_state.query_image, selected_segmentation['bbox'])
st.image(cropped_image, caption="Cropped Image", use_column_width=True)
query_embedding = get_image_embedding(cropped_image)
similar_images = find_similar_images(query_embedding, collection)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
category = img['info'].get('category')
if category:
st.write(f"Category: {category}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
if st.button("Start New Search"):
st.session_state.step = 'input'
st.session_state.query_image_url = ''
st.session_state.segmentations = []
st.session_state.selected_category = None
else: # Text search
query_text = st.text_input("Enter search text:")
if st.button("Search by Text"):
if query_text:
text_embedding = get_text_embedding(query_text)
similar_images = find_similar_images(text_embedding, collection)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
category = img['info'].get('category')
if category:
st.write(f"Category: {category}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
else:
st.warning("Please enter a search text.")
# Display ChromaDB vacuum message
st.sidebar.warning("If you've upgraded ChromaDB from a version below 0.6, you may benefit from vacuuming your database. Run 'chromadb utils vacuum --help' for more information.")