File size: 6,969 Bytes
5db0821 44014d4 7d37333 44014d4 7d37333 5db0821 44014d4 5db0821 44014d4 5db0821 44014d4 70e228b cbc4322 70e228b cbc4322 7d37333 70e228b cbc4322 7d37333 cbc4322 70e228b cbc4322 70e228b cbc4322 44014d4 3ddea50 44014d4 5db0821 3ddea50 5db0821 44014d4 5db0821 44014d4 5db0821 44014d4 5db0821 44014d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
import cv2
from inference_sdk import InferenceHTTPClient
import matplotlib.pyplot as plt
import base64
# ์ค๋ฅ ์ฒ๋ฆฌ๋ฅผ ์ํ ์์ธ ํด๋์ค ์ ์
class APIError(Exception):
pass
# Load model and tokenizer
@st.cache_resource
def load_model():
model, preprocess_val, tokenizer = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
model, preprocess_val, tokenizer, device = load_model()
# Roboflow client setup function
def setup_roboflow_client(api_key):
return InferenceHTTPClient(
api_url="https://outline.roboflow.com",
api_key=api_key
)
# Streamlit app
st.title("Fashion Search App with Segmentation")
# API Key input
api_key = st.text_input("Enter your Roboflow API Key", type="password")
if api_key:
CLIENT = setup_roboflow_client(api_key)
def segment_image(image_path):
try:
# ์ด๋ฏธ์ง ํ์ผ ์ฝ๊ธฐ
with open(image_path, "rb") as image_file:
image_data = image_file.read()
# ์ด๋ฏธ์ง๋ฅผ base64๋ก ์ธ์ฝ๋ฉ
encoded_image = base64.b64encode(image_data).decode('utf-8')
# ์๋ณธ ์ด๋ฏธ์ง ๋ก๋
image = cv2.imread(image_path)
image = cv2.resize(image, (800, 600))
mask = np.zeros(image.shape, dtype=np.uint8)
try:
# Roboflow API ํธ์ถ
results = CLIENT.infer(encoded_image, model_id="closet/1")
except Exception as api_error:
st.error(f"API Error: {str(api_error)}")
return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if 'predictions' in results:
for prediction in results['predictions']:
points = prediction['points']
pts = np.array([[p['x'], p['y']] for p in points], np.int32)
scale_x = image.shape[1] / results['image']['width']
scale_y = image.shape[0] / results['image']['height']
pts = pts * [scale_x, scale_y]
pts = pts.astype(np.int32)
pts = pts.reshape((-1, 1, 2))
cv2.fillPoly(mask, [pts], color=(255, 255, 255)) # White mask
segmented_image = cv2.bitwise_and(image, mask)
else:
st.warning("No predictions found in the image. Returning original image.")
segmented_image = image
return Image.fromarray(cv2.cvtColor(segmented_image, cv2.COLOR_BGR2RGB))
except Exception as e:
st.error(f"Error in segmentation: {str(e)}")
# ์๋ณธ ์ด๋ฏธ์ง๋ฅผ ๋ค์ ์ฝ์ด ๋ฐํ
return Image.open(image_path)
def get_image_embedding(image):
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()
# Load and process data
@st.cache_data
def load_data():
with open('musinsa-final.json', 'r', encoding='utf-8') as f:
return json.load(f)
data = load_data()
# Process database with segmentation
@st.cache_data
def process_database():
database_embeddings = []
database_info = []
for item in data:
image_url = item['์ด๋ฏธ์ง ๋งํฌ'][0]
# '\ufeff์ํ ID' ๋์ '์ํ ID'๋ฅผ ์ฌ์ฉํ๊ฑฐ๋, ๋ค์๊ณผ ๊ฐ์ด ์์
product_id = item.get('\ufeff์ํ ID') or item.get('์ํ ID')
image_path = "temp_{}.jpg".format(product_id)
response = requests.get(image_url)
with open(image_path, 'wb') as f:
f.write(response.content)
segmented_image = segment_image(image_path)
embedding = get_image_embedding(segmented_image)
database_embeddings.append(embedding)
database_info.append({
'id': product_id,
'category': item['์นดํ
๊ณ ๋ฆฌ'],
'brand': item['๋ธ๋๋๋ช
'],
'name': item['์ ํ๋ช
'],
'price': item['์ ๊ฐ'],
'discount': item['ํ ์ธ์จ'],
'image_url': image_url
})
return np.vstack(database_embeddings), database_info
database_embeddings, database_info = process_database()
def find_similar_images(query_embedding, top_k=5):
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
top_indices = np.argsort(similarities)[::-1][:top_k]
results = []
for idx in top_indices:
results.append({
'info': database_info[idx],
'similarity': similarities[idx]
})
return results
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
if st.button('Find Similar Items'):
with st.spinner('Processing...'):
# Save uploaded image temporarily
temp_path = "temp_upload.jpg"
image.save(temp_path)
# Segment the uploaded image
segmented_image = segment_image(temp_path)
st.image(segmented_image, caption='Segmented Image', use_column_width=True)
# Get embedding for segmented image
query_embedding = get_image_embedding(segmented_image)
similar_images = find_similar_images(query_embedding)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
st.write(f"Category: {img['info']['category']}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
else:
st.warning("Please enter your Roboflow API Key to use the app.") |