leemonz commited on
Commit
fa9296b
·
verified ·
1 Parent(s): de8b711

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +16 -13
  2. app.py +30 -149
  3. requirements.txt +5 -5
README.md CHANGED
@@ -1,14 +1,17 @@
1
- ---
2
- title: ROSPRITE
3
- emoji: 🖼
4
- colorFrom: purple
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.25.2
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- short_description: space for CharaForge
12
- ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Generador con SDXL + LoRA en GPU T4 Gratis
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ Este Space usa:
4
+ - Modelo base: stabilityai/stable-diffusion-xl-base-1.0
5
+ - LoRA de ejemplo: nerijs/pixel-art-xl
6
+
7
+ ## Cómo cambiar el LoRA
8
+ 1. Sube tu LoRA a Hugging Face (como modelo).
9
+ 2. En `app.py`, reemplaza:
10
+ LORA_MODEL = "nerijs/pixel-art-xl"
11
+ por tu repo: "usuario/mi-lora"
12
+ 3. Guarda y vuelve a lanzar el Space.
13
+
14
+ ## Recomendaciones para GPU T4
15
+ - Usar `torch_dtype=torch.float16`
16
+ - 20–30 pasos de inferencia
17
+ - Mantener LoRAs livianos para evitar OOM
app.py CHANGED
@@ -1,154 +1,35 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
  if __name__ == "__main__":
154
  demo.launch()
 
 
 
 
 
 
 
1
  import torch
2
+ from diffusers import StableDiffusionXLPipeline
3
+ import gradio as gr
4
 
5
+ # Modelo base
6
+ BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
7
+ # LoRA de ejemplo (puedes cambiarlo por el tuyo)
8
+ LORA_MODEL = "nerijs/pixel-art-xl"
9
+
10
+ print("Cargando modelo base...")
11
+ pipe = StableDiffusionXLPipeline.from_pretrained(
12
+ BASE_MODEL,
13
+ torch_dtype=torch.float16,
14
+ variant="fp16",
15
+ use_safetensors=True
16
+ ).to("cuda")
17
+
18
+ print("Cargando LoRA...")
19
+ pipe.load_lora_weights(LORA_MODEL)
20
+ pipe.fuse_lora(lora_scale=0.8) # Ajusta el peso del LoRA
21
+
22
+ def generar(prompt):
23
+ with torch.inference_mode():
24
+ image = pipe(prompt, num_inference_steps=25).images[0]
25
+ return image
26
+
27
+ demo = gr.Interface(
28
+ fn=generar,
29
+ inputs=gr.Textbox(label="Prompt", placeholder="Escribe tu prompt aquí..."),
30
+ outputs=gr.Image(label="Imagen generada"),
31
+ title="Generador con LoRA en T4 Gratis"
32
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  if __name__ == "__main__":
35
  demo.launch()
requirements.txt CHANGED
@@ -1,6 +1,6 @@
 
 
 
1
  accelerate
2
- diffusers
3
- invisible_watermark
4
- torch
5
- transformers
6
- xformers
 
1
+ torch==2.3.1
2
+ transformers>=4.40.0
3
+ diffusers>=0.29.0
4
  accelerate
5
+ safetensors
6
+ gradio>=4.0.0