leetuan023 commited on
Commit
7d79f10
·
verified ·
1 Parent(s): 53d654e

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -207
app.py DELETED
@@ -1,207 +0,0 @@
1
- import gradio as gr
2
- import pytesseract
3
- import cv2
4
- import multiprocessing
5
- from fuzzywuzzy import fuzz
6
- from dataclasses import dataclass
7
- from urllib.request import urlopen
8
- import shutil
9
- import pathlib
10
- import datetime
11
- import sys
12
-
13
- # Constants
14
- TESSDATA_DIR = pathlib.Path.home() / 'tessdata'
15
- TESSDATA_URL = 'https://github.com/tesseract-ocr/tessdata_fast/raw/master/{}.traineddata'
16
- TESSDATA_SCRIPT_URL = 'https://github.com/tesseract-ocr/tessdata_best/raw/master/script/{}.traineddata'
17
-
18
-
19
- # Download language data files if necessary
20
- def download_lang_data(lang: str):
21
- TESSDATA_DIR.mkdir(parents=True, exist_ok=True)
22
- for lang_name in lang.split('+'):
23
- filepath = TESSDATA_DIR / f'{lang_name}.traineddata'
24
- if not filepath.is_file():
25
- url = TESSDATA_SCRIPT_URL.format(lang_name) if lang_name[0].isupper() else TESSDATA_URL.format(lang_name)
26
- with urlopen(url) as res, open(filepath, 'w+b') as f:
27
- shutil.copyfileobj(res, f)
28
-
29
-
30
- # Helper functions for time and frame conversion
31
- def get_frame_index(time_str: str, fps: float):
32
- t = list(map(float, time_str.split(':')))
33
- if len(t) == 3:
34
- td = datetime.timedelta(hours=t[0], minutes=t[1], seconds=t[2])
35
- elif len(t) == 2:
36
- td = datetime.timedelta(minutes=t[0], seconds=t[1])
37
- else:
38
- raise ValueError(f'Time data "{time_str}" does not match format "%H:%M:%S"')
39
- return int(td.total_seconds() * fps)
40
-
41
-
42
- def get_srt_timestamp(frame_index: int, fps: float):
43
- td = datetime.timedelta(seconds=frame_index / fps)
44
- ms = td.microseconds // 1000
45
- m, s = divmod(td.seconds, 60)
46
- h, m = divmod(m, 60)
47
- return f'{h:02d}:{m:02d}:{s:02d},{ms:03d}'
48
-
49
-
50
- # Video capture class using OpenCV
51
- class Capture:
52
- def __init__(self, video_path):
53
- self.path = video_path
54
-
55
- def __enter__(self):
56
- self.cap = cv2.VideoCapture(self.path)
57
- if not self.cap.isOpened():
58
- raise IOError(f'Cannot open video {self.path}.')
59
- return self.cap
60
-
61
- def __exit__(self, exc_type, exc_value, traceback):
62
- self.cap.release()
63
-
64
-
65
- @dataclass
66
- class PredictedWord:
67
- confidence: int
68
- text: str
69
-
70
-
71
- class PredictedFrame:
72
- def __init__(self, index: int, pred_data: str, conf_threshold: int):
73
- self.index = index
74
- self.words = []
75
- block = 0
76
- for l in pred_data.splitlines()[1:]:
77
- word_data = l.split()
78
- if len(word_data) < 12:
79
- continue
80
- _, _, block_num, *_, conf, text = word_data
81
- block_num, conf = int(block_num), int(conf)
82
- if block < block_num:
83
- block = block_num
84
- if self.words and self.words[-1].text != '\n':
85
- self.words.append(PredictedWord(0, '\n'))
86
- if conf >= conf_threshold:
87
- self.words.append(PredictedWord(conf, text))
88
- self.confidence = sum(word.confidence for word in self.words)
89
- self.text = ' '.join(word.text for word in self.words).translate(str.maketrans('|', 'I', '<>{}[];`@#$%^*_=~\\')).replace(' \n ', '\n').strip()
90
-
91
- def is_similar_to(self, other, threshold=70):
92
- return fuzz.ratio(self.text, other.text) >= threshold
93
-
94
-
95
- class PredictedSubtitle:
96
- def __init__(self, frames, sim_threshold):
97
- self.frames = [f for f in frames if f.confidence > 0]
98
- self.sim_threshold = sim_threshold
99
- self.text = max(self.frames, key=lambda f: f.confidence).text if self.frames else ''
100
-
101
- @property
102
- def index_start(self):
103
- return self.frames[0].index if self.frames else 0
104
-
105
- @property
106
- def index_end(self):
107
- return self.frames[-1].index if self.frames else 0
108
-
109
- def is_similar_to(self, other):
110
- return fuzz.partial_ratio(self.text, other.text) >= self.sim_threshold
111
-
112
-
113
- class Video:
114
- def __init__(self, path):
115
- self.path = path
116
- with Capture(path) as v:
117
- self.num_frames = int(v.get(cv2.CAP_PROP_FRAME_COUNT))
118
- self.fps = v.get(cv2.CAP_PROP_FPS)
119
- self.height = int(v.get(cv2.CAP_PROP_FRAME_HEIGHT))
120
-
121
- def run_ocr(self, lang, time_start, time_end, conf_threshold, use_fullframe):
122
- self.lang = lang
123
- self.use_fullframe = use_fullframe
124
- ocr_start = get_frame_index(time_start, self.fps) if time_start else 0
125
- ocr_end = get_frame_index(time_end, self.fps) if time_end else self.num_frames
126
- if ocr_end < ocr_start:
127
- raise ValueError('time_start is later than time_end')
128
-
129
- num_ocr_frames = ocr_end - ocr_start
130
- with Capture(self.path) as v, multiprocessing.Pool() as pool:
131
- v.set(cv2.CAP_PROP_POS_FRAMES, ocr_start)
132
- frames = (v.read()[1] for _ in range(num_ocr_frames))
133
- it_ocr = pool.imap(self._image_to_data, frames, chunksize=10)
134
- self.pred_frames = [PredictedFrame(i + ocr_start, data, conf_threshold) for i, data in enumerate(it_ocr)]
135
-
136
- def _image_to_data(self, img):
137
- if not self.use_fullframe:
138
- img = img[self.height // 2:, :]
139
- config = f'--tessdata-dir "{TESSDATA_DIR}"'
140
- try:
141
- return pytesseract.image_to_data(img, lang=self.lang, config=config)
142
- except Exception as e:
143
- sys.exit(f'{e.__class__.__name__}: {e}')
144
-
145
- def get_subtitles(self, sim_threshold):
146
- self._generate_subtitles(sim_threshold)
147
- return ''.join(f'{i}\n{get_srt_timestamp(sub.index_start, self.fps)} --> {get_srt_timestamp(sub.index_end, self.fps)}\n{sub.text}\n\n' for i, sub in enumerate(self.pred_subs))
148
-
149
- def _generate_subtitles(self, sim_threshold):
150
- self.pred_subs = []
151
- if self.pred_frames is None:
152
- raise AttributeError('Please call self.run_ocr() first to perform OCR on frames')
153
-
154
- WIN_BOUND = int(self.fps // 2)
155
- bound = WIN_BOUND
156
- i = 0
157
- j = 1
158
- while j < len(self.pred_frames):
159
- fi, fj = self.pred_frames[i], self.pred_frames[j]
160
- if fi.is_similar_to(fj):
161
- bound = WIN_BOUND
162
- elif bound > 0:
163
- bound -= 1
164
- else:
165
- para_new = j - WIN_BOUND
166
- self._append_sub(PredictedSubtitle(self.pred_frames[i:para_new], sim_threshold))
167
- i = para_new
168
- j = i
169
- bound = WIN_BOUND
170
- j += 1
171
- if i < len(self.pred_frames) - 1:
172
- self._append_sub(PredictedSubtitle(self.pred_frames[i:], sim_threshold))
173
-
174
- def _append_sub(self, sub):
175
- if not sub.text:
176
- return
177
- while self.pred_subs and sub.is_similar_to(self.pred_subs[-1]):
178
- ls = self.pred_subs.pop()
179
- sub = PredictedSubtitle(ls.frames + sub.frames, sub.sim_threshold)
180
- self.pred_subs.append(sub)
181
-
182
-
183
- # Gradio app
184
- def extract_subtitles(video_file, lang, time_start, time_end, conf_threshold, use_fullframe, sim_threshold):
185
- video = Video(video_file.name)
186
- video.run_ocr(lang, time_start, time_end, conf_threshold, use_fullframe)
187
- subtitles = video.get_subtitles(sim_threshold)
188
- return subtitles
189
-
190
-
191
- iface = gr.Interface(
192
- fn=extract_subtitles,
193
- inputs=[
194
- gr.Video(label="Video File"),
195
- gr.Textbox(value='eng', label="OCR Language"),
196
- gr.Textbox(value='00:00:00', label="Start Time (HH:MM:SS)"),
197
- gr.Textbox(value='', label="End Time (HH:MM:SS, leave empty for full video)"),
198
- gr.Slider(0, 100, value=60, step=1, label="Confidence Threshold"),
199
- gr.Checkbox(label="Use Full Frame for OCR", default=False),
200
- gr.Slider(0, 100, value=70, step=1, label="Similarity Threshold")
201
- ],
202
- outputs=gr.Textbox(label="Extracted Subtitles"),
203
- title="Video Subtitle Extractor",
204
- description="Extract hardcoded subtitles from videos using machine learning.",
205
- )
206
-
207
- iface.launch()