leetuan023 commited on
Commit
7d8ee16
·
verified ·
1 Parent(s): 5475844

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +207 -0
app.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pytesseract
3
+ import cv2
4
+ import multiprocessing
5
+ from fuzzywuzzy import fuzz
6
+ from dataclasses import dataclass
7
+ from urllib.request import urlopen
8
+ import shutil
9
+ import pathlib
10
+ import datetime
11
+ import sys
12
+
13
+ # Constants
14
+ TESSDATA_DIR = pathlib.Path.home() / 'tessdata'
15
+ TESSDATA_URL = 'https://github.com/tesseract-ocr/tessdata_fast/raw/master/{}.traineddata'
16
+ TESSDATA_SCRIPT_URL = 'https://github.com/tesseract-ocr/tessdata_best/raw/master/script/{}.traineddata'
17
+
18
+
19
+ # Download language data files if necessary
20
+ def download_lang_data(lang: str):
21
+ TESSDATA_DIR.mkdir(parents=True, exist_ok=True)
22
+ for lang_name in lang.split('+'):
23
+ filepath = TESSDATA_DIR / f'{lang_name}.traineddata'
24
+ if not filepath.is_file():
25
+ url = TESSDATA_SCRIPT_URL.format(lang_name) if lang_name[0].isupper() else TESSDATA_URL.format(lang_name)
26
+ with urlopen(url) as res, open(filepath, 'w+b') as f:
27
+ shutil.copyfileobj(res, f)
28
+
29
+
30
+ # Helper functions for time and frame conversion
31
+ def get_frame_index(time_str: str, fps: float):
32
+ t = list(map(float, time_str.split(':')))
33
+ if len(t) == 3:
34
+ td = datetime.timedelta(hours=t[0], minutes=t[1], seconds=t[2])
35
+ elif len(t) == 2:
36
+ td = datetime.timedelta(minutes=t[0], seconds=t[1])
37
+ else:
38
+ raise ValueError(f'Time data "{time_str}" does not match format "%H:%M:%S"')
39
+ return int(td.total_seconds() * fps)
40
+
41
+
42
+ def get_srt_timestamp(frame_index: int, fps: float):
43
+ td = datetime.timedelta(seconds=frame_index / fps)
44
+ ms = td.microseconds // 1000
45
+ m, s = divmod(td.seconds, 60)
46
+ h, m = divmod(m, 60)
47
+ return f'{h:02d}:{m:02d}:{s:02d},{ms:03d}'
48
+
49
+
50
+ # Video capture class using OpenCV
51
+ class Capture:
52
+ def __init__(self, video_path):
53
+ self.path = video_path
54
+
55
+ def __enter__(self):
56
+ self.cap = cv2.VideoCapture(self.path)
57
+ if not self.cap.isOpened():
58
+ raise IOError(f'Cannot open video {self.path}.')
59
+ return self.cap
60
+
61
+ def __exit__(self, exc_type, exc_value, traceback):
62
+ self.cap.release()
63
+
64
+
65
+ @dataclass
66
+ class PredictedWord:
67
+ confidence: int
68
+ text: str
69
+
70
+
71
+ class PredictedFrame:
72
+ def __init__(self, index: int, pred_data: str, conf_threshold: int):
73
+ self.index = index
74
+ self.words = []
75
+ block = 0
76
+ for l in pred_data.splitlines()[1:]:
77
+ word_data = l.split()
78
+ if len(word_data) < 12:
79
+ continue
80
+ _, _, block_num, *_, conf, text = word_data
81
+ block_num, conf = int(block_num), int(conf)
82
+ if block < block_num:
83
+ block = block_num
84
+ if self.words and self.words[-1].text != '\n':
85
+ self.words.append(PredictedWord(0, '\n'))
86
+ if conf >= conf_threshold:
87
+ self.words.append(PredictedWord(conf, text))
88
+ self.confidence = sum(word.confidence for word in self.words)
89
+ self.text = ' '.join(word.text for word in self.words).translate(str.maketrans('|', 'I', '<>{}[];`@#$%^*_=~\\')).replace(' \n ', '\n').strip()
90
+
91
+ def is_similar_to(self, other, threshold=70):
92
+ return fuzz.ratio(self.text, other.text) >= threshold
93
+
94
+
95
+ class PredictedSubtitle:
96
+ def __init__(self, frames, sim_threshold):
97
+ self.frames = [f for f in frames if f.confidence > 0]
98
+ self.sim_threshold = sim_threshold
99
+ self.text = max(self.frames, key=lambda f: f.confidence).text if self.frames else ''
100
+
101
+ @property
102
+ def index_start(self):
103
+ return self.frames[0].index if self.frames else 0
104
+
105
+ @property
106
+ def index_end(self):
107
+ return self.frames[-1].index if self.frames else 0
108
+
109
+ def is_similar_to(self, other):
110
+ return fuzz.partial_ratio(self.text, other.text) >= self.sim_threshold
111
+
112
+
113
+ class Video:
114
+ def __init__(self, path):
115
+ self.path = path
116
+ with Capture(path) as v:
117
+ self.num_frames = int(v.get(cv2.CAP_PROP_FRAME_COUNT))
118
+ self.fps = v.get(cv2.CAP_PROP_FPS)
119
+ self.height = int(v.get(cv2.CAP_PROP_FRAME_HEIGHT))
120
+
121
+ def run_ocr(self, lang, time_start, time_end, conf_threshold, use_fullframe):
122
+ self.lang = lang
123
+ self.use_fullframe = use_fullframe
124
+ ocr_start = get_frame_index(time_start, self.fps) if time_start else 0
125
+ ocr_end = get_frame_index(time_end, self.fps) if time_end else self.num_frames
126
+ if ocr_end < ocr_start:
127
+ raise ValueError('time_start is later than time_end')
128
+
129
+ num_ocr_frames = ocr_end - ocr_start
130
+ with Capture(self.path) as v, multiprocessing.Pool() as pool:
131
+ v.set(cv2.CAP_PROP_POS_FRAMES, ocr_start)
132
+ frames = (v.read()[1] for _ in range(num_ocr_frames))
133
+ it_ocr = pool.imap(self._image_to_data, frames, chunksize=10)
134
+ self.pred_frames = [PredictedFrame(i + ocr_start, data, conf_threshold) for i, data in enumerate(it_ocr)]
135
+
136
+ def _image_to_data(self, img):
137
+ if not self.use_fullframe:
138
+ img = img[self.height // 2:, :]
139
+ config = f'--tessdata-dir "{TESSDATA_DIR}"'
140
+ try:
141
+ return pytesseract.image_to_data(img, lang=self.lang, config=config)
142
+ except Exception as e:
143
+ sys.exit(f'{e.__class__.__name__}: {e}')
144
+
145
+ def get_subtitles(self, sim_threshold):
146
+ self._generate_subtitles(sim_threshold)
147
+ return ''.join(f'{i}\n{get_srt_timestamp(sub.index_start, self.fps)} --> {get_srt_timestamp(sub.index_end, self.fps)}\n{sub.text}\n\n' for i, sub in enumerate(self.pred_subs))
148
+
149
+ def _generate_subtitles(self, sim_threshold):
150
+ self.pred_subs = []
151
+ if self.pred_frames is None:
152
+ raise AttributeError('Please call self.run_ocr() first to perform OCR on frames')
153
+
154
+ WIN_BOUND = int(self.fps // 2)
155
+ bound = WIN_BOUND
156
+ i = 0
157
+ j = 1
158
+ while j < len(self.pred_frames):
159
+ fi, fj = self.pred_frames[i], self.pred_frames[j]
160
+ if fi.is_similar_to(fj):
161
+ bound = WIN_BOUND
162
+ elif bound > 0:
163
+ bound -= 1
164
+ else:
165
+ para_new = j - WIN_BOUND
166
+ self._append_sub(PredictedSubtitle(self.pred_frames[i:para_new], sim_threshold))
167
+ i = para_new
168
+ j = i
169
+ bound = WIN_BOUND
170
+ j += 1
171
+ if i < len(self.pred_frames) - 1:
172
+ self._append_sub(PredictedSubtitle(self.pred_frames[i:], sim_threshold))
173
+
174
+ def _append_sub(self, sub):
175
+ if not sub.text:
176
+ return
177
+ while self.pred_subs and sub.is_similar_to(self.pred_subs[-1]):
178
+ ls = self.pred_subs.pop()
179
+ sub = PredictedSubtitle(ls.frames + sub.frames, sub.sim_threshold)
180
+ self.pred_subs.append(sub)
181
+
182
+
183
+ # Gradio app
184
+ def extract_subtitles(video_file, lang, time_start, time_end, conf_threshold, use_fullframe, sim_threshold):
185
+ video = Video(video_file.name)
186
+ video.run_ocr(lang, time_start, time_end, conf_threshold, use_fullframe)
187
+ subtitles = video.get_subtitles(sim_threshold)
188
+ return subtitles
189
+
190
+
191
+ iface = gr.Interface(
192
+ fn=extract_subtitles,
193
+ inputs=[
194
+ gr.Video(label="Video File"),
195
+ gr.Textbox(value='eng', label="OCR Language"),
196
+ gr.Textbox(value='00:00:00', label="Start Time (HH:MM:SS)"),
197
+ gr.Textbox(value='', label="End Time (HH:MM:SS, leave empty for full video)"),
198
+ gr.Slider(0, 100, value=60, step=1, label="Confidence Threshold"),
199
+ gr.Checkbox(label="Use Full Frame for OCR", default=False),
200
+ gr.Slider(0, 100, value=70, step=1, label="Similarity Threshold")
201
+ ],
202
+ outputs=gr.Textbox(label="Extracted Subtitles"),
203
+ title="Video Subtitle Extractor",
204
+ description="Extract hardcoded subtitles from videos using machine learning.",
205
+ )
206
+
207
+ iface.launch()