Spaces:
Configuration error
Configuration error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pytesseract
|
3 |
+
import cv2
|
4 |
+
import multiprocessing
|
5 |
+
from fuzzywuzzy import fuzz
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from urllib.request import urlopen
|
8 |
+
import shutil
|
9 |
+
import pathlib
|
10 |
+
import datetime
|
11 |
+
import sys
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
TESSDATA_DIR = pathlib.Path.home() / 'tessdata'
|
15 |
+
TESSDATA_URL = 'https://github.com/tesseract-ocr/tessdata_fast/raw/master/{}.traineddata'
|
16 |
+
TESSDATA_SCRIPT_URL = 'https://github.com/tesseract-ocr/tessdata_best/raw/master/script/{}.traineddata'
|
17 |
+
|
18 |
+
|
19 |
+
# Download language data files if necessary
|
20 |
+
def download_lang_data(lang: str):
|
21 |
+
TESSDATA_DIR.mkdir(parents=True, exist_ok=True)
|
22 |
+
for lang_name in lang.split('+'):
|
23 |
+
filepath = TESSDATA_DIR / f'{lang_name}.traineddata'
|
24 |
+
if not filepath.is_file():
|
25 |
+
url = TESSDATA_SCRIPT_URL.format(lang_name) if lang_name[0].isupper() else TESSDATA_URL.format(lang_name)
|
26 |
+
with urlopen(url) as res, open(filepath, 'w+b') as f:
|
27 |
+
shutil.copyfileobj(res, f)
|
28 |
+
|
29 |
+
|
30 |
+
# Helper functions for time and frame conversion
|
31 |
+
def get_frame_index(time_str: str, fps: float):
|
32 |
+
t = list(map(float, time_str.split(':')))
|
33 |
+
if len(t) == 3:
|
34 |
+
td = datetime.timedelta(hours=t[0], minutes=t[1], seconds=t[2])
|
35 |
+
elif len(t) == 2:
|
36 |
+
td = datetime.timedelta(minutes=t[0], seconds=t[1])
|
37 |
+
else:
|
38 |
+
raise ValueError(f'Time data "{time_str}" does not match format "%H:%M:%S"')
|
39 |
+
return int(td.total_seconds() * fps)
|
40 |
+
|
41 |
+
|
42 |
+
def get_srt_timestamp(frame_index: int, fps: float):
|
43 |
+
td = datetime.timedelta(seconds=frame_index / fps)
|
44 |
+
ms = td.microseconds // 1000
|
45 |
+
m, s = divmod(td.seconds, 60)
|
46 |
+
h, m = divmod(m, 60)
|
47 |
+
return f'{h:02d}:{m:02d}:{s:02d},{ms:03d}'
|
48 |
+
|
49 |
+
|
50 |
+
# Video capture class using OpenCV
|
51 |
+
class Capture:
|
52 |
+
def __init__(self, video_path):
|
53 |
+
self.path = video_path
|
54 |
+
|
55 |
+
def __enter__(self):
|
56 |
+
self.cap = cv2.VideoCapture(self.path)
|
57 |
+
if not self.cap.isOpened():
|
58 |
+
raise IOError(f'Cannot open video {self.path}.')
|
59 |
+
return self.cap
|
60 |
+
|
61 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
62 |
+
self.cap.release()
|
63 |
+
|
64 |
+
|
65 |
+
@dataclass
|
66 |
+
class PredictedWord:
|
67 |
+
confidence: int
|
68 |
+
text: str
|
69 |
+
|
70 |
+
|
71 |
+
class PredictedFrame:
|
72 |
+
def __init__(self, index: int, pred_data: str, conf_threshold: int):
|
73 |
+
self.index = index
|
74 |
+
self.words = []
|
75 |
+
block = 0
|
76 |
+
for l in pred_data.splitlines()[1:]:
|
77 |
+
word_data = l.split()
|
78 |
+
if len(word_data) < 12:
|
79 |
+
continue
|
80 |
+
_, _, block_num, *_, conf, text = word_data
|
81 |
+
block_num, conf = int(block_num), int(conf)
|
82 |
+
if block < block_num:
|
83 |
+
block = block_num
|
84 |
+
if self.words and self.words[-1].text != '\n':
|
85 |
+
self.words.append(PredictedWord(0, '\n'))
|
86 |
+
if conf >= conf_threshold:
|
87 |
+
self.words.append(PredictedWord(conf, text))
|
88 |
+
self.confidence = sum(word.confidence for word in self.words)
|
89 |
+
self.text = ' '.join(word.text for word in self.words).translate(str.maketrans('|', 'I', '<>{}[];`@#$%^*_=~\\')).replace(' \n ', '\n').strip()
|
90 |
+
|
91 |
+
def is_similar_to(self, other, threshold=70):
|
92 |
+
return fuzz.ratio(self.text, other.text) >= threshold
|
93 |
+
|
94 |
+
|
95 |
+
class PredictedSubtitle:
|
96 |
+
def __init__(self, frames, sim_threshold):
|
97 |
+
self.frames = [f for f in frames if f.confidence > 0]
|
98 |
+
self.sim_threshold = sim_threshold
|
99 |
+
self.text = max(self.frames, key=lambda f: f.confidence).text if self.frames else ''
|
100 |
+
|
101 |
+
@property
|
102 |
+
def index_start(self):
|
103 |
+
return self.frames[0].index if self.frames else 0
|
104 |
+
|
105 |
+
@property
|
106 |
+
def index_end(self):
|
107 |
+
return self.frames[-1].index if self.frames else 0
|
108 |
+
|
109 |
+
def is_similar_to(self, other):
|
110 |
+
return fuzz.partial_ratio(self.text, other.text) >= self.sim_threshold
|
111 |
+
|
112 |
+
|
113 |
+
class Video:
|
114 |
+
def __init__(self, path):
|
115 |
+
self.path = path
|
116 |
+
with Capture(path) as v:
|
117 |
+
self.num_frames = int(v.get(cv2.CAP_PROP_FRAME_COUNT))
|
118 |
+
self.fps = v.get(cv2.CAP_PROP_FPS)
|
119 |
+
self.height = int(v.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
120 |
+
|
121 |
+
def run_ocr(self, lang, time_start, time_end, conf_threshold, use_fullframe):
|
122 |
+
self.lang = lang
|
123 |
+
self.use_fullframe = use_fullframe
|
124 |
+
ocr_start = get_frame_index(time_start, self.fps) if time_start else 0
|
125 |
+
ocr_end = get_frame_index(time_end, self.fps) if time_end else self.num_frames
|
126 |
+
if ocr_end < ocr_start:
|
127 |
+
raise ValueError('time_start is later than time_end')
|
128 |
+
|
129 |
+
num_ocr_frames = ocr_end - ocr_start
|
130 |
+
with Capture(self.path) as v, multiprocessing.Pool() as pool:
|
131 |
+
v.set(cv2.CAP_PROP_POS_FRAMES, ocr_start)
|
132 |
+
frames = (v.read()[1] for _ in range(num_ocr_frames))
|
133 |
+
it_ocr = pool.imap(self._image_to_data, frames, chunksize=10)
|
134 |
+
self.pred_frames = [PredictedFrame(i + ocr_start, data, conf_threshold) for i, data in enumerate(it_ocr)]
|
135 |
+
|
136 |
+
def _image_to_data(self, img):
|
137 |
+
if not self.use_fullframe:
|
138 |
+
img = img[self.height // 2:, :]
|
139 |
+
config = f'--tessdata-dir "{TESSDATA_DIR}"'
|
140 |
+
try:
|
141 |
+
return pytesseract.image_to_data(img, lang=self.lang, config=config)
|
142 |
+
except Exception as e:
|
143 |
+
sys.exit(f'{e.__class__.__name__}: {e}')
|
144 |
+
|
145 |
+
def get_subtitles(self, sim_threshold):
|
146 |
+
self._generate_subtitles(sim_threshold)
|
147 |
+
return ''.join(f'{i}\n{get_srt_timestamp(sub.index_start, self.fps)} --> {get_srt_timestamp(sub.index_end, self.fps)}\n{sub.text}\n\n' for i, sub in enumerate(self.pred_subs))
|
148 |
+
|
149 |
+
def _generate_subtitles(self, sim_threshold):
|
150 |
+
self.pred_subs = []
|
151 |
+
if self.pred_frames is None:
|
152 |
+
raise AttributeError('Please call self.run_ocr() first to perform OCR on frames')
|
153 |
+
|
154 |
+
WIN_BOUND = int(self.fps // 2)
|
155 |
+
bound = WIN_BOUND
|
156 |
+
i = 0
|
157 |
+
j = 1
|
158 |
+
while j < len(self.pred_frames):
|
159 |
+
fi, fj = self.pred_frames[i], self.pred_frames[j]
|
160 |
+
if fi.is_similar_to(fj):
|
161 |
+
bound = WIN_BOUND
|
162 |
+
elif bound > 0:
|
163 |
+
bound -= 1
|
164 |
+
else:
|
165 |
+
para_new = j - WIN_BOUND
|
166 |
+
self._append_sub(PredictedSubtitle(self.pred_frames[i:para_new], sim_threshold))
|
167 |
+
i = para_new
|
168 |
+
j = i
|
169 |
+
bound = WIN_BOUND
|
170 |
+
j += 1
|
171 |
+
if i < len(self.pred_frames) - 1:
|
172 |
+
self._append_sub(PredictedSubtitle(self.pred_frames[i:], sim_threshold))
|
173 |
+
|
174 |
+
def _append_sub(self, sub):
|
175 |
+
if not sub.text:
|
176 |
+
return
|
177 |
+
while self.pred_subs and sub.is_similar_to(self.pred_subs[-1]):
|
178 |
+
ls = self.pred_subs.pop()
|
179 |
+
sub = PredictedSubtitle(ls.frames + sub.frames, sub.sim_threshold)
|
180 |
+
self.pred_subs.append(sub)
|
181 |
+
|
182 |
+
|
183 |
+
# Gradio app
|
184 |
+
def extract_subtitles(video_file, lang, time_start, time_end, conf_threshold, use_fullframe, sim_threshold):
|
185 |
+
video = Video(video_file.name)
|
186 |
+
video.run_ocr(lang, time_start, time_end, conf_threshold, use_fullframe)
|
187 |
+
subtitles = video.get_subtitles(sim_threshold)
|
188 |
+
return subtitles
|
189 |
+
|
190 |
+
|
191 |
+
iface = gr.Interface(
|
192 |
+
fn=extract_subtitles,
|
193 |
+
inputs=[
|
194 |
+
gr.Video(label="Video File"),
|
195 |
+
gr.Textbox(value='eng', label="OCR Language"),
|
196 |
+
gr.Textbox(value='00:00:00', label="Start Time (HH:MM:SS)"),
|
197 |
+
gr.Textbox(value='', label="End Time (HH:MM:SS, leave empty for full video)"),
|
198 |
+
gr.Slider(0, 100, value=60, step=1, label="Confidence Threshold"),
|
199 |
+
gr.Checkbox(label="Use Full Frame for OCR", default=False),
|
200 |
+
gr.Slider(0, 100, value=70, step=1, label="Similarity Threshold")
|
201 |
+
],
|
202 |
+
outputs=gr.Textbox(label="Extracted Subtitles"),
|
203 |
+
title="Video Subtitle Extractor",
|
204 |
+
description="Extract hardcoded subtitles from videos using machine learning.",
|
205 |
+
)
|
206 |
+
|
207 |
+
iface.launch()
|