Spaces:
Runtime error
Runtime error
File size: 1,819 Bytes
75c11a1 e861ca3 724a8c6 70cdcf7 75c11a1 e861ca3 ff2962c e861ca3 70cdcf7 e861ca3 70cdcf7 e861ca3 70cdcf7 e861ca3 70cdcf7 e861ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import datasets
# Load your fine-tuned model and tokenizer
model_name = "legacy107/flan-t5-large-bottleneck-adapter-cpgQA-unique"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.set_active_adapters("question_answering")
max_length = 512
max_target_length = 128
# Load your dataset
dataset = datasets.load_dataset("minh21/cpgQA-v1.0-unique-context-test-10-percent", split="test[:10]")
# Define your function to generate answers
def generate_answer(question, context):
# Combine question and context
input_text = f"question: {question} context: {context}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
generated_ids = model.generate(input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_answer
# Define a function to list examples from the dataset
def list_examples():
examples = []
for example in dataset:
context = example["context"]
question = example["question"]
examples.append([context, question])
return examples
# Create a Gradio interface
iface = gr.Interface(
fn=generate_answer,
inputs=[
gr.inputs.Textbox(label="Question"),
gr.inputs.Textbox(label="Context")
],
outputs=gr.outputs.Textbox(label="Generated Answer"),
examples=list_examples()
)
# Launch the Gradio interface
iface.launch()
|