Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load your fine-tuned model and tokenizer | |
model_name = "legacy107/flan-t5-large-bottleneck-adapter-cpgQA-unique" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, device_map="auto") | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_checkpoint, device_map="auto" | |
) | |
model.set_active_adapters("question_answering") | |
max_length = 512 | |
max_target_length = 128 | |
# Define your function to generate answers | |
def generate_answer(question, context): | |
# Combine question and context | |
input_text = f"question: {question} context: {context}" | |
# Tokenize the input text | |
input_ids = tokenizer( | |
input_text, | |
return_tensors="pt", | |
padding="max_length", | |
truncation=True, | |
max_length=512, | |
).input_ids | |
# Generate the answer | |
with torch.no_grad(): | |
generated_ids = model.generate(input_ids, max_new_tokens=max_target_length) | |
# Decode and return the generated answer | |
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return generated_answer | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_answer, | |
inputs=[ | |
gr.inputs.Textbox(label="Question"), | |
gr.inputs.Textbox(label="Context") | |
], | |
outputs=gr.outputs.Textbox(label="Generated Answer") | |
) | |
# Launch the Gradio interface | |
iface.launch() | |