legacy107's picture
Update app.py
fe974d3
raw
history blame
7.54 kB
import gradio as gr
from gradio.components import Textbox, Checkbox
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import PeftModel
import torch
import datasets
from sentence_transformers import CrossEncoder
import math
import re
from nltk import sent_tokenize, word_tokenize
import nltk
nltk.download('punkt')
# Load cross encoder
top_k = 10
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Load your fine-tuned model and tokenizer
model_name = "google/flan-t5-large"
peft_name = "legacy107/flan-t5-large-ia3-covidqa"
tokenizer = AutoTokenizer.from_pretrained(model_name)
pretrained_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = PeftModel.from_pretrained(model, peft_name)
peft_name = "legacy107/flan-t5-large-ia3-bioasq-paraphrase"
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
paraphrase_model = PeftModel.from_pretrained(paraphrase_model, peft_name)
max_length = 512
max_target_length = 200
# Load your dataset
dataset = datasets.load_dataset("minh21/COVID-QA-Chunk-64-testset-biencoder-data-90_10", split="train")
# dataset = dataset.shuffle()
dataset = dataset.select([6, 18, 24, 156, 650, 19, 31, 97, 133, 183])
# Context chunking
min_sentences_per_chunk = 3
chunk_size = 64
window_size = math.ceil(min_sentences_per_chunk * 0.25)
over_lap_chunk_size = chunk_size * 0.25
def chunk_splitter(context):
sentences = sent_tokenize(context)
chunks = []
current_chunk = []
for sentence in sentences:
if len(current_chunk) < min_sentences_per_chunk:
current_chunk.append(sentence)
continue
elif len(word_tokenize(' '.join(current_chunk) + " " + sentence)) < chunk_size:
current_chunk.append(sentence)
continue
chunks.append(' '.join(current_chunk))
new_chunk = current_chunk[-window_size:]
new_window = window_size
buffer_new_chunk = new_chunk
while len(word_tokenize(' '.join(new_chunk))) <= over_lap_chunk_size:
buffer_new_chunk = new_chunk
new_window += 1
new_chunk = current_chunk[-new_window:]
if new_window >= len(current_chunk):
break
current_chunk = buffer_new_chunk
current_chunk.append(sentence)
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def clean_data(text):
# Extract abstract content
index = text.find("\nAbstract: ")
if index != -1:
cleaned_text = text[index + len("\nAbstract: "):]
else:
cleaned_text = text # If "\nAbstract: " is not found, keep the original text
# Remove both http and https links using a regular expression
cleaned_text = re.sub(r'(http(s|)\/\/:( |)\S+)|(http(s|):\/\/( |)\S+)', '', cleaned_text)
# Remove DOI patterns like "doi:10.1371/journal.pone.0007211.s003"
cleaned_text = re.sub(r'doi:( |)\w+', '', cleaned_text)
# Remove the "(0.11 MB DOC)" pattern
cleaned_text = re.sub(r'\(0\.\d+ MB DOC\)', '', cleaned_text)
cleaned_text = re.sub(r'www\.\w+(.org|)', '', cleaned_text)
return cleaned_text
def paraphrase_answer(question, answer, use_pretrained=False):
# Combine question and context
input_text = f"question: {question}. Paraphrase the answer to make it more natural answer: {answer}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
if use_pretrained:
generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
else:
generated_ids = paraphrase_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
paraphrased_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return paraphrased_answer
def retrieve_context(question, contexts):
# cross-encoder
hits = [{"corpus_id": i} for i in range(len(contexts))]
cross_inp = [[question, contexts[hit["corpus_id"]]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp, show_progress_bar=False)
for idx in range(len(cross_scores)):
hits[idx]["cross-score"] = cross_scores[idx]
hits = sorted(hits, key=lambda x: x["cross-score"], reverse=True)
return " ".join(
[contexts[hit["corpus_id"]] for hit in hits[0:top_k]]
).replace("\n", " ")
# Define your function to generate answers
def generate_answer(question, context, ground, do_pretrained, do_natural, do_pretrained_natural):
contexts = chunk_splitter(clean_data(context))
context = retrieve_context(question, contexts)
ground_in_context = ground in context
# Combine question and context
input_text = f"question: {question} context: {context}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
generated_ids = model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
# Paraphrase answer
paraphrased_answer = ""
if do_natural:
paraphrased_answer = paraphrase_answer(question, generated_answer)
# Get pretrained model's answer
pretrained_answer = ""
if do_pretrained:
with torch.no_grad():
pretrained_generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
pretrained_answer = tokenizer.decode(pretrained_generated_ids[0], skip_special_tokens=True)
# Get pretrained model's natural answer
pretrained_paraphrased_answer = ""
if do_pretrained_natural:
pretrained_paraphrased_answer = paraphrase_answer(question, generated_answer, True)
return generated_answer, paraphrased_answer, ground_in_context, pretrained_answer, pretrained_paraphrased_answer, context
# Define a function to list examples from the dataset
def list_examples():
examples = []
for example in dataset:
context = example["context"]
question = example["question"]
answer = example["answer"]
examples.append([question, context, answer, True, True, True])
return examples
# Create a Gradio interface
iface = gr.Interface(
fn=generate_answer,
inputs=[
Textbox(label="Question"),
Textbox(label="Context"),
Textbox(label="Ground truth"),
Checkbox(label="Include pretrained model's result"),
Checkbox(label="Include natural answer"),
Checkbox(label="Include pretrained model's natural answer")
],
outputs=[
Textbox(label="Generated Answer"),
Textbox(label="Natural Answer"),
Checkbox(label="Ground truth in the retrieved context"),
Textbox(label="Pretrained Model's Answer"),
Textbox(label="Pretrained Model's Natural Answer"),
Textbox(label="Retrieved Context")
],
examples=list_examples(),
examples_per_page=1,
)
# Launch the Gradio interface
iface.launch()