import gradio as gr from gradio.components import Textbox from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration from peft import PeftModel import torch import datasets from sentence_transformers import SentenceTransformer, util import math import re from nltk import sent_tokenize, word_tokenize import nltk nltk.download('punkt') # Load bi encoder bi_encoder = SentenceTransformer('legacy107/multi-qa-mpnet-base-dot-v1-wikipedia-search') bi_encoder.max_seq_length = 256 top_k = 3 # Load your fine-tuned model and tokenizer model_name = "legacy107/flan-t5-large-ia3-wiki2-100-merged" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) max_length = 512 max_target_length = 200 # Load your dataset dataset = datasets.load_dataset("legacy107/qa_wikipedia_retrieved_chunks", split="test") dataset = dataset.shuffle() dataset = dataset.select(range(10)) # Context chunking def chunk_splitter(context, chunk_size=100, overlap=0.20): overlap_size = chunk_size * overlap sentences = nltk.sent_tokenize(context) chunks = [] text = sentences[0] if len(sentences) == 1: chunks.append(text) i = 1 while i < len(sentences): text += " " + sentences[i] i += 1 while i < len(sentences) and len(nltk.word_tokenize(f"{text} {sentences[i]}")) <= chunk_size: text += " " + sentences[i] i += 1 text = text.replace('\"','"').replace("\'","'").replace('\n\n\n'," ").replace('\n\n'," ").replace('\n'," ") chunks.append(text) if (i >= len(sentences)): break j = i - 1 text = sentences[j] while j >= 0 and len(nltk.word_tokenize(f"{sentences[j]} {text}")) <= overlap_size: text = sentences[j] + " " + text j -= 1 return chunks def retrieve_context(query, contexts): corpus_embeddings = bi_encoder.encode(contexts, convert_to_tensor=True, show_progress_bar=False) question_embedding = bi_encoder.encode(query, convert_to_tensor=True, show_progress_bar=False) question_embedding = question_embedding hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] hits = sorted(hits, key=lambda x: x['score'], reverse=True) return " ".join([contexts[hit['corpus_id']] for hit in hits[0:top_k]]).replace("\n", " ") # Define your function to generate answers def generate_answer(question, context, title, ground): contexts = chunk_splitter(context) context = retrieve_context(question, contexts) # Combine question and context input_text = f"question: {question} context: {context}" # Tokenize the input text input_ids = tokenizer( input_text, return_tensors="pt", padding="max_length", truncation=True, max_length=max_length, ).input_ids # Generate the answer with torch.no_grad(): generated_ids = model.generate(input_ids=input_ids, max_new_tokens=max_target_length) # Decode and return the generated answer generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True) return generated_answer, context # Define a function to list examples from the dataset def list_examples(): examples = [] for example in dataset: context = example["article"] question = example["question"] answer = example["answer"] title = example["title"] examples.append([question, context, title, answer]) return examples # Create a Gradio interface iface = gr.Interface( fn=generate_answer, inputs=[ Textbox(label="Question"), Textbox(label="Context"), Textbox(label="Article title"), Textbox(label="Ground truth") ], outputs=[ Textbox(label="Generated Answer"), Textbox(label="Retrieved Context") ], examples=list_examples() ) # Launch the Gradio interface iface.launch()