Spaces:
Build error
Build error
File size: 5,430 Bytes
ae8ef07 ebc5123 ae8ef07 ebc5123 8f06d53 ebc5123 ae8ef07 ebc5123 ae8ef07 ebc5123 ae8ef07 ebc5123 ae8ef07 ebc5123 ae8ef07 ebc5123 ae8ef07 ebc5123 ae8ef07 ebc5123 8f06d53 ebc5123 8bee988 ebc5123 a91f2d1 ebc5123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import streamlit as st
from bs4 import BeautifulSoup
import requests
import os
import time
from openai import OpenAI
import google.generativeai as genai
genai.configure(api_key='AIzaSyBE9XAwJiAs6xY2UukvGYsy0ghtxA1F2q8')
generation_config = {
"temperature": 0,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
headers = {
"User-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"
}
proxies = {"http": os.getenv("HTTP_PROXY")}
@st.cache_data(ttl=3600)
def search_legal_cases(query, num_results=10):
url = "https://scholar.google.com/scholar?hl=en&as_sdt=6"
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.3"
}
params = {
"q": query,
"hl": "en",
"num": num_results,
"as_sdt": "4", # This parameter filters the search results to legal cases
}
response = requests.get(url, proxies=proxies, headers=headers, params=params)
soup = BeautifulSoup(response.text, "html.parser")
results = []
for result in soup.find_all("div", class_="gs_ri"):
title = result.find("h3", class_="gs_rt").text
base_url = "https://scholar.google.com"
link = base_url + result.find("a")["href"]
citation = result.find("div", class_="gs_a").text.replace(" - Google Scholar", "")
results.append((title, link, citation))
return results
@st.cache_data(ttl=3600)
def extract_text_from_link(url):
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.63 Safari/537.3"
}
response = requests.get(url, headers=headers, proxies=proxies)
soup = BeautifulSoup(response.content, "html.parser")
text = soup.get_text(separator="\n")
return text
# @st.cache_data(ttl=3600)
# def get_summary(text):
# client = OpenAI(api_key='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')
# completion = client.chat.completions.create(
# model="gpt-4o",
# messages=[
# {"role": "system", "content": f'''You are a law professor specialized in legal writing and legal research.
# When presented with a case by a user please summarize it according to the following requirements:
# Name of the court.
# Facts (name of the parties, what happened factually).
# Procedural history (what happened in the past procedurally, what were prior judgements).
# Issues (what is in dispute).
# Holding (the applied rule of law).
# Rationale (reasons for the holding).
# Decision (what did the court decide, e.g. affirmed, overruled).
# Other opinions (if there are any dissenting or concurring opinions, summarize majority opinion, dissenting opinion and concurring opinion).
# Cases cited (which cases the court cited and how it treated them).'''},
# {"role": "user", "content": f"Please summarize this case according to the instructions: {text}. "}
# ]
# )
# return completion.choices[0].message.content
def get_summary(text):
model = genai.GenerativeModel('gemini-1.5-flash', generation_config=generation_config)
response = model.generate_content(f'''You are a law professor specialized in legal writing and legal research.
When presented with a case by a user please summarize it according to the following requirements:
Name of the court.
Facts (name of the parties, what happened factually).
Procedural history (what happened in the past procedurally, what were prior judgements).
Issues (what is in dispute).
Holding (the applied rule of law).
Rationale (reasons for the holding).
Decision (what did the court decide, e.g. affirmed, overruled).
Other opinions (if there are any dissenting or concurring opinions, summarize majority opinion, dissenting opinion and concurring opinion).
Cases cited (which cases the court cited and how it treated them).
Here is the text of the court decision: {text}''',
stream=False)
return response
st.write("\n")
st.write("\n")
search_query = st.text_input("case name, e.g. brown v board supreme, 372 US 335, google v oracle appeal")
if search_query:
with st.spinner("Searching for cases..."):
results = search_legal_cases(search_query)
if results:
title, link, citation = results[0]
st.write("Title:\n", title)
#st.write("Link:\n", link)
st.write("Citation:\n", citation)
#with st.spinner("Extracting text from case / Generating summary"):
text = extract_text_from_link(link)
#st.write(text) # Optionally display the extracted text
summary = get_summary(text)
#st.write(response)
st.write(summary.text)
#for chunk in summary:
#st.write(chunk.text)
#st.write("_"*80)
else:
st.write("No results found.")
|