Spaces:
Running
on
Zero
Running
on
Zero
Delete dataset/transforms.py with huggingface_hub
Browse files- dataset/transforms.py +0 -133
dataset/transforms.py
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
|
4 |
-
def crop(image, i, j, h, w):
|
5 |
-
"""
|
6 |
-
Args:
|
7 |
-
image (torch.tensor): Image to be cropped. Size is (C, H, W)
|
8 |
-
"""
|
9 |
-
if len(image.size()) != 3:
|
10 |
-
raise ValueError("image should be a 3D tensor")
|
11 |
-
return image[..., i : i + h, j : j + w]
|
12 |
-
|
13 |
-
def resize(image, target_size, interpolation_mode):
|
14 |
-
if len(target_size) != 2:
|
15 |
-
raise ValueError(f"target size should be tuple (height, width), instead got {target_size}")
|
16 |
-
return F.interpolate(image.unsqueeze(0), size=target_size, mode=interpolation_mode, align_corners=False).squeeze(0)
|
17 |
-
|
18 |
-
def resize_scale(image, target_size, interpolation_mode):
|
19 |
-
if len(target_size) != 2:
|
20 |
-
raise ValueError(f"target size should be tuple (height, width), instead got {target_size}")
|
21 |
-
H, W = image.size(-2), image.size(-1)
|
22 |
-
scale_ = target_size[0] / min(H, W)
|
23 |
-
return F.interpolate(image.unsqueeze(0), scale_factor=scale_, mode=interpolation_mode, align_corners=False).squeeze(0)
|
24 |
-
|
25 |
-
def resized_crop(image, i, j, h, w, size, interpolation_mode="bilinear"):
|
26 |
-
"""
|
27 |
-
Do spatial cropping and resizing to the image
|
28 |
-
Args:
|
29 |
-
image (torch.tensor): Image to be cropped. Size is (C, H, W)
|
30 |
-
i (int): i in (i,j) i.e coordinates of the upper left corner.
|
31 |
-
j (int): j in (i,j) i.e coordinates of the upper left corner.
|
32 |
-
h (int): Height of the cropped region.
|
33 |
-
w (int): Width of the cropped region.
|
34 |
-
size (tuple(int, int)): height and width of resized image
|
35 |
-
Returns:
|
36 |
-
image (torch.tensor): Resized and cropped image. Size is (C, H, W)
|
37 |
-
"""
|
38 |
-
if len(image.size()) != 3:
|
39 |
-
raise ValueError("image should be a 3D torch.tensor")
|
40 |
-
image = crop(image, i, j, h, w)
|
41 |
-
image = resize(image, size, interpolation_mode)
|
42 |
-
return image
|
43 |
-
|
44 |
-
def center_crop(image, crop_size):
|
45 |
-
if len(image.size()) != 3:
|
46 |
-
raise ValueError("image should be a 3D torch.tensor")
|
47 |
-
h, w = image.size(-2), image.size(-1)
|
48 |
-
th, tw = crop_size
|
49 |
-
if h < th or w < tw:
|
50 |
-
raise ValueError("height and width must be no smaller than crop_size")
|
51 |
-
i = int(round((h - th) / 2.0))
|
52 |
-
j = int(round((w - tw) / 2.0))
|
53 |
-
return crop(image, i, j, th, tw)
|
54 |
-
|
55 |
-
def center_crop_using_short_edge(image):
|
56 |
-
if len(image.size()) != 3:
|
57 |
-
raise ValueError("image should be a 3D torch.tensor")
|
58 |
-
h, w = image.size(-2), image.size(-1)
|
59 |
-
if h < w:
|
60 |
-
th, tw = h, h
|
61 |
-
i = 0
|
62 |
-
j = int(round((w - tw) / 2.0))
|
63 |
-
else:
|
64 |
-
th, tw = w, w
|
65 |
-
i = int(round((h - th) / 2.0))
|
66 |
-
j = 0
|
67 |
-
return crop(image, i, j, th, tw)
|
68 |
-
|
69 |
-
class CenterCropResizeImage:
|
70 |
-
"""
|
71 |
-
Resize the image while maintaining aspect ratio, and then crop it to the desired size.
|
72 |
-
The resizing is done such that the area of padding/cropping is minimized.
|
73 |
-
"""
|
74 |
-
def __init__(self, size, interpolation_mode="bilinear"):
|
75 |
-
if isinstance(size, tuple):
|
76 |
-
if len(size) != 2:
|
77 |
-
raise ValueError(f"Size should be a tuple (height, width), instead got {size}")
|
78 |
-
self.size = size
|
79 |
-
else:
|
80 |
-
self.size = (size, size)
|
81 |
-
self.interpolation_mode = interpolation_mode
|
82 |
-
|
83 |
-
def __call__(self, image):
|
84 |
-
"""
|
85 |
-
Args:
|
86 |
-
image (torch.Tensor): Image to be resized and cropped. Size is (C, H, W)
|
87 |
-
|
88 |
-
Returns:
|
89 |
-
torch.Tensor: Resized and cropped image. Size is (C, target_height, target_width)
|
90 |
-
"""
|
91 |
-
target_height, target_width = self.size
|
92 |
-
target_aspect = target_width / target_height
|
93 |
-
|
94 |
-
# Get current image shape and aspect ratio
|
95 |
-
_, height, width = image.shape
|
96 |
-
height, width = float(height), float(width)
|
97 |
-
current_aspect = width / height
|
98 |
-
|
99 |
-
# Calculate crop dimensions
|
100 |
-
if current_aspect > target_aspect:
|
101 |
-
# Image is wider than target, crop width
|
102 |
-
crop_height = height
|
103 |
-
crop_width = height * target_aspect
|
104 |
-
else:
|
105 |
-
# Image is taller than target, crop height
|
106 |
-
crop_height = width / target_aspect
|
107 |
-
crop_width = width
|
108 |
-
|
109 |
-
# Calculate crop coordinates (center crop)
|
110 |
-
y1 = (height - crop_height) / 2
|
111 |
-
x1 = (width - crop_width) / 2
|
112 |
-
|
113 |
-
# Perform the crop
|
114 |
-
cropped_image = crop(image, int(y1), int(x1), int(crop_height), int(crop_width))
|
115 |
-
|
116 |
-
# Resize the cropped image to the target size
|
117 |
-
resized_image = resize(cropped_image, self.size, self.interpolation_mode)
|
118 |
-
|
119 |
-
return resized_image
|
120 |
-
|
121 |
-
# Example usage
|
122 |
-
if __name__ == "__main__":
|
123 |
-
# Create a sample image tensor
|
124 |
-
sample_image = torch.rand(3, 480, 640) # (C, H, W)
|
125 |
-
|
126 |
-
# Initialize the transform
|
127 |
-
transform = CenterCropResizeImage(size=(224, 224), interpolation_mode="bilinear")
|
128 |
-
|
129 |
-
# Apply the transform
|
130 |
-
transformed_image = transform(sample_image)
|
131 |
-
|
132 |
-
print(f"Original image shape: {sample_image.shape}")
|
133 |
-
print(f"Transformed image shape: {transformed_image.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|