Spaces:
Running
on
Zero
Running
on
Zero
Delete dataset/multitask/multiview.py with huggingface_hub
Browse files- dataset/multitask/multiview.py +0 -277
dataset/multitask/multiview.py
DELETED
@@ -1,277 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import random
|
4 |
-
from PIL import Image
|
5 |
-
import torch
|
6 |
-
from typing import List, Tuple, Union
|
7 |
-
from torch.utils.data import Dataset
|
8 |
-
from torchvision import transforms
|
9 |
-
import torchvision.transforms as T
|
10 |
-
from onediffusion.dataset.utils import *
|
11 |
-
import glob
|
12 |
-
|
13 |
-
from onediffusion.dataset.raydiff_utils import cameras_to_rays, first_camera_transform, normalize_cameras
|
14 |
-
from onediffusion.dataset.transforms import CenterCropResizeImage
|
15 |
-
from pytorch3d.renderer import PerspectiveCameras
|
16 |
-
|
17 |
-
import numpy as np
|
18 |
-
|
19 |
-
def _cameras_from_opencv_projection(
|
20 |
-
R: torch.Tensor,
|
21 |
-
tvec: torch.Tensor,
|
22 |
-
camera_matrix: torch.Tensor,
|
23 |
-
image_size: torch.Tensor,
|
24 |
-
do_normalize_cameras,
|
25 |
-
normalize_scale,
|
26 |
-
) -> PerspectiveCameras:
|
27 |
-
focal_length = torch.stack([camera_matrix[:, 0, 0], camera_matrix[:, 1, 1]], dim=-1)
|
28 |
-
principal_point = camera_matrix[:, :2, 2]
|
29 |
-
|
30 |
-
# Retype the image_size correctly and flip to width, height.
|
31 |
-
image_size_wh = image_size.to(R).flip(dims=(1,))
|
32 |
-
|
33 |
-
# Screen to NDC conversion:
|
34 |
-
# For non square images, we scale the points such that smallest side
|
35 |
-
# has range [-1, 1] and the largest side has range [-u, u], with u > 1.
|
36 |
-
# This convention is consistent with the PyTorch3D renderer, as well as
|
37 |
-
# the transformation function `get_ndc_to_screen_transform`.
|
38 |
-
scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0
|
39 |
-
scale = scale.expand(-1, 2)
|
40 |
-
c0 = image_size_wh / 2.0
|
41 |
-
|
42 |
-
# Get the PyTorch3D focal length and principal point.
|
43 |
-
focal_pytorch3d = focal_length / scale
|
44 |
-
p0_pytorch3d = -(principal_point - c0) / scale
|
45 |
-
|
46 |
-
# For R, T we flip x, y axes (opencv screen space has an opposite
|
47 |
-
# orientation of screen axes).
|
48 |
-
# We also transpose R (opencv multiplies points from the opposite=left side).
|
49 |
-
R_pytorch3d = R.clone().permute(0, 2, 1)
|
50 |
-
T_pytorch3d = tvec.clone()
|
51 |
-
R_pytorch3d[:, :, :2] *= -1
|
52 |
-
T_pytorch3d[:, :2] *= -1
|
53 |
-
|
54 |
-
cams = PerspectiveCameras(
|
55 |
-
R=R_pytorch3d,
|
56 |
-
T=T_pytorch3d,
|
57 |
-
focal_length=focal_pytorch3d,
|
58 |
-
principal_point=p0_pytorch3d,
|
59 |
-
image_size=image_size,
|
60 |
-
device=R.device,
|
61 |
-
)
|
62 |
-
|
63 |
-
if do_normalize_cameras:
|
64 |
-
cams, _ = normalize_cameras(cams, scale=normalize_scale)
|
65 |
-
|
66 |
-
cams = first_camera_transform(cams, rotation_only=False)
|
67 |
-
return cams
|
68 |
-
|
69 |
-
def calculate_rays(Ks, sizes, Rs, Ts, target_size, use_plucker=True, do_normalize_cameras=False, normalize_scale=1.0):
|
70 |
-
cameras = _cameras_from_opencv_projection(
|
71 |
-
R=Rs,
|
72 |
-
tvec=Ts,
|
73 |
-
camera_matrix=Ks,
|
74 |
-
image_size=sizes,
|
75 |
-
do_normalize_cameras=do_normalize_cameras,
|
76 |
-
normalize_scale=normalize_scale
|
77 |
-
)
|
78 |
-
|
79 |
-
rays_embedding = cameras_to_rays(
|
80 |
-
cameras=cameras,
|
81 |
-
num_patches_x=target_size,
|
82 |
-
num_patches_y=target_size,
|
83 |
-
crop_parameters=None,
|
84 |
-
use_plucker=use_plucker
|
85 |
-
)
|
86 |
-
|
87 |
-
return rays_embedding.rays
|
88 |
-
|
89 |
-
def convert_rgba_to_rgb_white_bg(image):
|
90 |
-
"""Convert RGBA image to RGB with white background"""
|
91 |
-
if image.mode == 'RGBA':
|
92 |
-
# Create a white background
|
93 |
-
background = Image.new('RGBA', image.size, (255, 255, 255, 255))
|
94 |
-
# Composite the image onto the white background
|
95 |
-
return Image.alpha_composite(background, image).convert('RGB')
|
96 |
-
return image.convert('RGB')
|
97 |
-
|
98 |
-
class MultiviewDataset(Dataset):
|
99 |
-
def __init__(
|
100 |
-
self,
|
101 |
-
scene_folders: str,
|
102 |
-
samples_per_set: Union[int, Tuple[int, int]], # Changed from samples_per_set to samples_range
|
103 |
-
transform=None,
|
104 |
-
caption_keys: Union[str, List] = "caption",
|
105 |
-
multiscale=False,
|
106 |
-
aspect_ratio_type=ASPECT_RATIO_512,
|
107 |
-
c2w_scaling=1.7,
|
108 |
-
default_max_distance=1, # default max distance from all camera of a scene ,
|
109 |
-
do_normalize=True, # whether normalize translation of c2w with max_distance
|
110 |
-
swap_xz=False, # whether swap x and z axis of 3D scenes
|
111 |
-
valid_paths: str = "",
|
112 |
-
frame_sliding_windows: float = None # limit all sampled frames to be within this window, so that camera poses won't be too different
|
113 |
-
):
|
114 |
-
if not isinstance(samples_per_set, tuple) and not isinstance(samples_per_set, list):
|
115 |
-
samples_per_set = (samples_per_set, samples_per_set)
|
116 |
-
self.samples_range = samples_per_set # Tuple of (min_samples, max_samples)
|
117 |
-
self.transform = transform
|
118 |
-
self.caption_keys = caption_keys if isinstance(caption_keys, list) else [caption_keys]
|
119 |
-
self.aspect_ratio = aspect_ratio_type
|
120 |
-
self.scene_folders = sorted(glob.glob(scene_folders))
|
121 |
-
# filter out scene folders that do not have transforms.json
|
122 |
-
self.scene_folders = list(filter(lambda x: os.path.exists(os.path.join(x, "transforms.json")), self.scene_folders))
|
123 |
-
|
124 |
-
# if valid_paths.txt exists, only use paths in that file
|
125 |
-
if os.path.exists(valid_paths):
|
126 |
-
with open(valid_paths, 'r') as f:
|
127 |
-
valid_scene_folders = f.read().splitlines()
|
128 |
-
self.scene_folders = sorted(valid_scene_folders)
|
129 |
-
|
130 |
-
self.c2w_scaling = c2w_scaling
|
131 |
-
self.do_normalize = do_normalize
|
132 |
-
self.default_max_distance = default_max_distance
|
133 |
-
self.swap_xz = swap_xz
|
134 |
-
self.frame_sliding_windows = frame_sliding_windows
|
135 |
-
|
136 |
-
if multiscale:
|
137 |
-
assert self.aspect_ratio in [ASPECT_RATIO_512, ASPECT_RATIO_1024, ASPECT_RATIO_2048, ASPECT_RATIO_2880]
|
138 |
-
if self.aspect_ratio in [ASPECT_RATIO_2048, ASPECT_RATIO_2880]:
|
139 |
-
self.interpolate_model = T.InterpolationMode.LANCZOS
|
140 |
-
self.ratio_index = {}
|
141 |
-
self.ratio_nums = {}
|
142 |
-
for k, v in self.aspect_ratio.items():
|
143 |
-
self.ratio_index[float(k)] = [] # used for self.getitem
|
144 |
-
self.ratio_nums[float(k)] = 0 # used for batch-sampler
|
145 |
-
|
146 |
-
def __len__(self):
|
147 |
-
return len(self.scene_folders)
|
148 |
-
|
149 |
-
def __getitem__(self, idx):
|
150 |
-
try:
|
151 |
-
scene_path = self.scene_folders[idx]
|
152 |
-
|
153 |
-
if os.path.exists(os.path.join(scene_path, "images")):
|
154 |
-
image_folder = os.path.join(scene_path, "images")
|
155 |
-
downscale_factor = 1
|
156 |
-
elif os.path.exists(os.path.join(scene_path, "images_4")):
|
157 |
-
image_folder = os.path.join(scene_path, "images_4")
|
158 |
-
downscale_factor = 1 / 4
|
159 |
-
elif os.path.exists(os.path.join(scene_path, "images_8")):
|
160 |
-
image_folder = os.path.join(scene_path, "images_8")
|
161 |
-
downscale_factor = 1 / 8
|
162 |
-
else:
|
163 |
-
raise NotImplementedError
|
164 |
-
|
165 |
-
json_path = os.path.join(scene_path, "transforms.json")
|
166 |
-
caption_path = os.path.join(scene_path, "caption.json")
|
167 |
-
image_files = os.listdir(image_folder)
|
168 |
-
|
169 |
-
with open(json_path, 'r') as f:
|
170 |
-
json_data = json.load(f)
|
171 |
-
height, width = json_data['h'], json_data['w']
|
172 |
-
|
173 |
-
dh, dw = int(height * downscale_factor), int(width * downscale_factor)
|
174 |
-
fl_x, fl_y = json_data['fl_x'] * downscale_factor, json_data['fl_y'] * downscale_factor
|
175 |
-
cx = dw // 2
|
176 |
-
cy = dh // 2
|
177 |
-
|
178 |
-
frame_list = json_data['frames']
|
179 |
-
|
180 |
-
# Randomly select number of samples
|
181 |
-
|
182 |
-
samples_per_set = random.randint(self.samples_range[0], self.samples_range[1])
|
183 |
-
|
184 |
-
# uniformly for all scenes
|
185 |
-
if self.frame_sliding_windows is None:
|
186 |
-
selected_indices = random.sample(range(len(frame_list)), min(samples_per_set, len(frame_list)))
|
187 |
-
# limit the multiview to be in a sliding window (to avoid catastrophic difference in camera angles)
|
188 |
-
else:
|
189 |
-
# Determine the starting index of the sliding window
|
190 |
-
if len(frame_list) <= self.frame_sliding_windows:
|
191 |
-
# If the frame list is smaller than or equal to X, use the entire list
|
192 |
-
window_start = 0
|
193 |
-
window_end = len(frame_list)
|
194 |
-
else:
|
195 |
-
# Randomly select a starting point for the window
|
196 |
-
window_start = random.randint(0, len(frame_list) - self.frame_sliding_windows)
|
197 |
-
window_end = window_start + self.frame_sliding_windows
|
198 |
-
|
199 |
-
# Get the indices within the sliding window
|
200 |
-
window_indices = list(range(window_start, window_end))
|
201 |
-
|
202 |
-
# Randomly sample indices from the window
|
203 |
-
selected_indices = random.sample(window_indices, samples_per_set)
|
204 |
-
|
205 |
-
image_files = [os.path.basename(frame_list[i]['file_path']) for i in selected_indices]
|
206 |
-
image_paths = [os.path.join(image_folder, file) for file in image_files]
|
207 |
-
|
208 |
-
# Load images and convert RGBA to RGB with white background
|
209 |
-
images = [convert_rgba_to_rgb_white_bg(Image.open(image_path)) for image_path in image_paths]
|
210 |
-
|
211 |
-
if self.transform:
|
212 |
-
images = [self.transform(image) for image in images]
|
213 |
-
else:
|
214 |
-
closest_size, closest_ratio = self.aspect_ratio['1.0'], 1.0
|
215 |
-
closest_size = tuple(map(int, closest_size))
|
216 |
-
transform = T.Compose([
|
217 |
-
T.ToTensor(),
|
218 |
-
CenterCropResizeImage(closest_size),
|
219 |
-
T.Normalize([.5], [.5]),
|
220 |
-
])
|
221 |
-
images = [transform(image) for image in images]
|
222 |
-
images = torch.stack(images)
|
223 |
-
|
224 |
-
c2ws = [frame_list[i]['transform_matrix'] for i in selected_indices]
|
225 |
-
c2ws = torch.tensor(c2ws).reshape(-1, 4, 4)
|
226 |
-
# max_distance = json_data.get('max_distance', self.default_max_distance)
|
227 |
-
# if 'max_distance' not in json_data.keys():
|
228 |
-
# print(f"not found `max_distance` in json path: {json_path}")
|
229 |
-
|
230 |
-
if self.swap_xz:
|
231 |
-
swap_xz = torch.tensor([[[0, 0, 1., 0],
|
232 |
-
[0, 1., 0, 0],
|
233 |
-
[-1., 0, 0, 0],
|
234 |
-
[0, 0, 0, 1.]]])
|
235 |
-
c2ws = swap_xz @ c2ws
|
236 |
-
|
237 |
-
# OPENGL to OPENCV
|
238 |
-
c2ws[:, 0:3, 1:3] *= -1
|
239 |
-
c2ws = c2ws[:, [1, 0, 2, 3], :]
|
240 |
-
c2ws[:, 2, :] *= -1
|
241 |
-
|
242 |
-
w2cs = torch.inverse(c2ws)
|
243 |
-
K = torch.tensor([[[fl_x, 0, cx], [0, fl_y, cy], [0, 0, 1]]]).repeat(len(c2ws), 1, 1)
|
244 |
-
Rs = w2cs[:, :3, :3]
|
245 |
-
Ts = w2cs[:, :3, 3]
|
246 |
-
sizes = torch.tensor([[dh, dw]]).repeat(len(c2ws), 1)
|
247 |
-
|
248 |
-
# get ray embedding and padding last dimension to 16 (num channels of VAE)
|
249 |
-
# rays_od = calculate_rays(K, sizes, Rs, Ts, closest_size[0] // 8, use_plucker=False, do_normalize_cameras=self.do_normalize, normalize_scale=self.c2w_scaling)
|
250 |
-
rays = calculate_rays(K, sizes, Rs, Ts, closest_size[0] // 8, do_normalize_cameras=self.do_normalize, normalize_scale=self.c2w_scaling)
|
251 |
-
rays = rays.reshape(samples_per_set, closest_size[0] // 8, closest_size[1] // 8, 6)
|
252 |
-
# padding = (0, 10) # pad the last dimension to 16
|
253 |
-
# rays = torch.nn.functional.pad(rays, padding, "constant", 0)
|
254 |
-
rays = torch.cat([rays, rays, rays[..., :4]], dim=-1) * 1.658
|
255 |
-
|
256 |
-
if os.path.exists(caption_path):
|
257 |
-
with open(caption_path, 'r') as f:
|
258 |
-
caption_key = random.choice(self.caption_keys)
|
259 |
-
caption = json.load(f).get(caption_key, "")
|
260 |
-
else:
|
261 |
-
caption = ""
|
262 |
-
|
263 |
-
caption = "[[multiview]] " + caption if caption else "[[multiview]]"
|
264 |
-
|
265 |
-
return {
|
266 |
-
'pixel_values': images,
|
267 |
-
'rays': rays,
|
268 |
-
'aspect_ratio': closest_ratio,
|
269 |
-
'caption': caption,
|
270 |
-
'height': dh,
|
271 |
-
'width': dw,
|
272 |
-
# 'origins': rays_od[..., :3],
|
273 |
-
# 'dirs': rays_od[..., 3:6]
|
274 |
-
}
|
275 |
-
except Exception as e:
|
276 |
-
return self.__getitem__(random.randint(0, len(self.scene_folders) - 1))
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|