newapp / app.py
leilaaaaa's picture
Update app.py
55a3203 verified
raw
history blame
3.78 kB
import gradio as gr
from PIL import Image
import io
import base64
from huggingface_hub import InferenceClient
# Initialize the Hugging Face Inference Client
client = InferenceClient("microsoft/llava-med-7b-delta")
# Custom Field for Base64 Encoded Image
class Base64ImageField(gr.Field):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def preprocess(self, image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
return img_str
# Function to interact with LLAVA model
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
image=None
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
if image:
# Convert image(s) to base64 using the custom field
if isinstance(image, Image.Image):
image_b64 = Base64ImageField().preprocess(image)
messages.append({"role": "user", "content": "Image uploaded", "image": image_b64})
else:
for img in image:
image_b64 = Base64ImageField().preprocess(img)
messages.append({"role": "user", "content": "Image uploaded", "image": image_b64})
# Call Hugging Face model for response
try:
responses = []
generated_image = None
for response in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = response.choices[0].delta.content
responses.append(token)
# Check if the response contains an image to be displayed
if response.choices[0].delta.image:
image_b64 = response.choices[0].delta.image
image_data = base64.b64decode(image_b64)
generated_image = Image.open(io.BytesIO(image_data))
# Optionally convert to RGB if needed
# generated_image = generated_image.convert("RGB")
yield responses, generated_image
except Exception as e:
yield [str(e)], None
# Debugging print statements
print("Starting Gradio interface setup...")
try:
# Create a Gradio interface
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(label="Message"),
gr.Image(label="Upload Medical Image (Optional)", type="pil")
],
outputs=[
gr.Textbox(label="Response", placeholder="Model response will appear here..."),
gr.Image(label="Generated Image", type="pil", output=True)
],
title="LLAVA Model - Medical Image and Question",
description="Upload a medical image and ask a specific question about the image for a medical description.",
additional_inputs=[
gr.Textbox(label="System message", value="You are a friendly Chatbot."),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
]
)
# Launch the Gradio interface
if __name__ == "__main__":
print("Launching Gradio interface...")
demo.launch()
except Exception as e:
print(f"Error during Gradio setup: {str(e)}")