Update app.py
Browse files
app.py
CHANGED
@@ -32,10 +32,8 @@ def respond(
|
|
32 |
if val[1]:
|
33 |
messages.append({"role": "assistant", "content": val[1]})
|
34 |
|
35 |
-
messages.append({"role": "user", "content": message})
|
36 |
-
|
37 |
if image:
|
38 |
-
# Convert image
|
39 |
if isinstance(image, Image.Image):
|
40 |
image_b64 = image_to_base64(image)
|
41 |
messages.append({"role": "user", "content": "Image uploaded", "image": image_b64})
|
@@ -44,9 +42,10 @@ def respond(
|
|
44 |
image_b64 = image_to_base64(img)
|
45 |
messages.append({"role": "user", "content": "Image uploaded", "image": image_b64})
|
46 |
|
|
|
|
|
47 |
try:
|
48 |
responses = []
|
49 |
-
generated_image = None
|
50 |
|
51 |
for response in client.chat_completion(
|
52 |
messages,
|
@@ -58,18 +57,10 @@ def respond(
|
|
58 |
token = response.choices[0].delta.content
|
59 |
responses.append(token)
|
60 |
|
61 |
-
|
62 |
-
if response.choices[0].delta.image:
|
63 |
-
image_b64 = response.choices[0].delta.image
|
64 |
-
image_data = base64.b64decode(image_b64)
|
65 |
-
generated_image = Image.open(io.BytesIO(image_data))
|
66 |
-
# Optionally convert to RGB if needed
|
67 |
-
# generated_image = generated_image.convert("RGB")
|
68 |
-
|
69 |
-
return responses, generated_image
|
70 |
|
71 |
except Exception as e:
|
72 |
-
return [str(e)]
|
73 |
|
74 |
# Debugging print statements
|
75 |
print("Starting Gradio interface setup...")
|
@@ -78,15 +69,12 @@ try:
|
|
78 |
demo = gr.Interface(
|
79 |
fn=respond,
|
80 |
inputs=[
|
81 |
-
gr.
|
82 |
-
gr.
|
83 |
-
],
|
84 |
-
outputs=[
|
85 |
-
gr.Textbox(label="Response", placeholder="Model response will appear here..."),
|
86 |
-
gr.Image(label="Generated Image", type="pil", output=True)
|
87 |
],
|
88 |
-
|
89 |
-
|
|
|
90 |
additional_inputs=[
|
91 |
gr.Textbox(label="System message", value="You are a friendly Chatbot."),
|
92 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
|
|
32 |
if val[1]:
|
33 |
messages.append({"role": "assistant", "content": val[1]})
|
34 |
|
|
|
|
|
35 |
if image:
|
36 |
+
# Convert image to base64
|
37 |
if isinstance(image, Image.Image):
|
38 |
image_b64 = image_to_base64(image)
|
39 |
messages.append({"role": "user", "content": "Image uploaded", "image": image_b64})
|
|
|
42 |
image_b64 = image_to_base64(img)
|
43 |
messages.append({"role": "user", "content": "Image uploaded", "image": image_b64})
|
44 |
|
45 |
+
messages.append({"role": "user", "content": message})
|
46 |
+
|
47 |
try:
|
48 |
responses = []
|
|
|
49 |
|
50 |
for response in client.chat_completion(
|
51 |
messages,
|
|
|
57 |
token = response.choices[0].delta.content
|
58 |
responses.append(token)
|
59 |
|
60 |
+
return responses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
except Exception as e:
|
63 |
+
return [str(e)]
|
64 |
|
65 |
# Debugging print statements
|
66 |
print("Starting Gradio interface setup...")
|
|
|
69 |
demo = gr.Interface(
|
70 |
fn=respond,
|
71 |
inputs=[
|
72 |
+
gr.Image(label="Upload Medical Image", type="pil", optional=True),
|
73 |
+
gr.Textbox(label="Message")
|
|
|
|
|
|
|
|
|
74 |
],
|
75 |
+
outputs=gr.Textbox(label="Response", placeholder="Model response will appear here..."),
|
76 |
+
title="LLAVA Model - Medical Image and Question",
|
77 |
+
description="Upload a medical image and ask a specific question about the image for a medical description.",
|
78 |
additional_inputs=[
|
79 |
gr.Textbox(label="System message", value="You are a friendly Chatbot."),
|
80 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|