leledaidai commited on
Commit
93b1cfa
·
verified ·
1 Parent(s): 684a251

Upload 2 files

Browse files
Files changed (2) hide show
  1. agent_api_web_demo.py +196 -0
  2. multi_agents_api_web_demo.py +198 -0
agent_api_web_demo.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import os
3
+ from typing import List
4
+ import streamlit as st
5
+ from lagent.actions import ArxivSearch, WeatherQuery
6
+ from lagent.prompts.parsers import PluginParser
7
+ from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
8
+ from lagent.llms import GPTAPI
9
+
10
+ class SessionState:
11
+ """管理会话状态的类。"""
12
+
13
+ def init_state(self):
14
+ """初始化会话状态变量。"""
15
+ st.session_state['assistant'] = [] # 助手消息历史
16
+ st.session_state['user'] = [] # 用户消息历史
17
+ # 初始化插件列表
18
+ action_list = [
19
+ ArxivSearch(),
20
+ WeatherQuery(),
21
+ ]
22
+ st.session_state['plugin_map'] = {action.name: action for action in action_list}
23
+ st.session_state['model_map'] = {} # 存储模型实例
24
+ st.session_state['model_selected'] = None # 当前选定模型
25
+ st.session_state['plugin_actions'] = set() # 当前激活插件
26
+ st.session_state['history'] = [] # 聊天历史
27
+ st.session_state['api_base'] = None # 初始化API base地址
28
+
29
+ def clear_state(self):
30
+ """清除当前会话状态。"""
31
+ st.session_state['assistant'] = []
32
+ st.session_state['user'] = []
33
+ st.session_state['model_selected'] = None
34
+
35
+
36
+ class StreamlitUI:
37
+ """管理 Streamlit 界面的类。"""
38
+
39
+ def __init__(self, session_state: SessionState):
40
+ self.session_state = session_state
41
+ self.plugin_action = [] # 当前选定的插件
42
+ # 初始化提示词
43
+ self.meta_prompt = META_CN
44
+ self.plugin_prompt = PLUGIN_CN
45
+ self.init_streamlit()
46
+
47
+ def init_streamlit(self):
48
+ """初始化 Streamlit 的 UI 设置。"""
49
+ st.set_page_config(
50
+ layout='wide',
51
+ page_title='lagent-web',
52
+ page_icon='./docs/imgs/lagent_icon.png'
53
+ )
54
+ st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
55
+
56
+ def setup_sidebar(self):
57
+ """设置侧边栏,选择模型和插件。"""
58
+ # 模型名称和 API Base 输入框
59
+ model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
60
+
61
+ # ================================== 硅基流动的API ==================================
62
+ # 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
63
+ # api_base = st.sidebar.text_input(
64
+ # 'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
65
+ # )
66
+ # ================================== 浦语官方的API ==================================
67
+ api_base = st.sidebar.text_input(
68
+ 'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
69
+ )
70
+ # ==================================================================================
71
+ # 插件选择
72
+ plugin_name = st.sidebar.multiselect(
73
+ '插件选择',
74
+ options=list(st.session_state['plugin_map'].keys()),
75
+ default=[],
76
+ )
77
+
78
+ # 根据选择的插件生成插件操作列表
79
+ self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]
80
+
81
+ # 动态生成插件提示
82
+ if self.plugin_action:
83
+ self.plugin_prompt = get_plugin_prompt(self.plugin_action)
84
+
85
+ # 清空对话按钮
86
+ if st.sidebar.button('清空对话', key='clear'):
87
+ self.session_state.clear_state()
88
+
89
+ return model_name, api_base, self.plugin_action
90
+
91
+ def initialize_chatbot(self, model_name, api_base, plugin_action):
92
+ """初始化 GPTAPI 实例作为 chatbot。"""
93
+ token = os.getenv("api_key")
94
+ if not token:
95
+ st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
96
+ st.stop() # 停止运行应用
97
+
98
+ # 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
99
+ meta_prompt = [
100
+ {"role": "system", "content": self.meta_prompt, "api_role": "system"},
101
+ {"role": "user", "content": "", "api_role": "user"},
102
+ {"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"},
103
+ {"role": "environment", "content": "", "api_role": "environment"}
104
+ ]
105
+
106
+ api_model = GPTAPI(
107
+ model_type=model_name,
108
+ api_base=api_base,
109
+ key=token, # 从环境变量中获取授权令牌
110
+ meta_template=meta_prompt,
111
+ max_new_tokens=512,
112
+ temperature=0.8,
113
+ top_p=0.9
114
+ )
115
+ return api_model
116
+
117
+ def render_user(self, prompt: str):
118
+ """渲染用户输入内容。"""
119
+ with st.chat_message('user'):
120
+ st.markdown(prompt)
121
+
122
+ def render_assistant(self, agent_return):
123
+ """渲染助手响应内容。"""
124
+ with st.chat_message('assistant'):
125
+ content = getattr(agent_return, "content", str(agent_return))
126
+ st.markdown(content if isinstance(content, str) else str(content))
127
+
128
+
129
+ def main():
130
+ """主函数,运行 Streamlit 应用。"""
131
+ if 'ui' not in st.session_state:
132
+ session_state = SessionState()
133
+ session_state.init_state()
134
+ st.session_state['ui'] = StreamlitUI(session_state)
135
+ else:
136
+ st.set_page_config(
137
+ layout='wide',
138
+ page_title='lagent-web',
139
+ page_icon='./docs/imgs/lagent_icon.png'
140
+ )
141
+ st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
142
+
143
+ # 设置侧边栏并获取模型和插件信息
144
+ model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar()
145
+ plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action]
146
+
147
+ if (
148
+ 'chatbot' not in st.session_state or
149
+ model_name != st.session_state['chatbot'].model_type or
150
+ 'last_plugin_action' not in st.session_state or
151
+ plugin_action != st.session_state['last_plugin_action'] or
152
+ api_base != st.session_state['api_base']
153
+ ):
154
+ # 更新 Chatbot
155
+ st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action)
156
+ st.session_state['last_plugin_action'] = plugin_action # 更新插件状态
157
+ st.session_state['api_base'] = api_base # 更新 API Base 地址
158
+
159
+ # 初始化 AgentForInternLM
160
+ st.session_state['agent'] = AgentForInternLM(
161
+ llm=st.session_state['chatbot'],
162
+ plugins=plugins,
163
+ output_format=dict(
164
+ type=PluginParser,
165
+ template=PLUGIN_CN,
166
+ prompt=get_plugin_prompt(plugin_action)
167
+ )
168
+ )
169
+ # 清空对话历史
170
+ st.session_state['session_history'] = []
171
+
172
+ if 'agent' not in st.session_state:
173
+ st.session_state['agent'] = None
174
+
175
+ agent = st.session_state['agent']
176
+ for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']):
177
+ st.session_state['ui'].render_user(prompt)
178
+ st.session_state['ui'].render_assistant(agent_return)
179
+
180
+ # 处理用户输入
181
+ if user_input := st.chat_input(''):
182
+ st.session_state['ui'].render_user(user_input)
183
+
184
+ # 调用模型时确保侧边栏的系统提示词和插件提示词生效
185
+ res = agent(user_input, session_id=0)
186
+ st.session_state['ui'].render_assistant(res)
187
+
188
+ # 更新会话状态
189
+ st.session_state['user'].append(user_input)
190
+ st.session_state['assistant'].append(copy.deepcopy(res))
191
+
192
+ st.session_state['last_status'] = None
193
+
194
+
195
+ if __name__ == '__main__':
196
+ main()
multi_agents_api_web_demo.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import asyncio
3
+ import json
4
+ import re
5
+ import requests
6
+ import streamlit as st
7
+
8
+ from lagent.agents import Agent
9
+ from lagent.prompts.parsers import PluginParser
10
+ from lagent.agents.stream import PLUGIN_CN, get_plugin_prompt
11
+ from lagent.schema import AgentMessage
12
+ from lagent.actions import ArxivSearch
13
+ from lagent.hooks import Hook
14
+ from lagent.llms import GPTAPI
15
+
16
+ YOUR_TOKEN_HERE = os.getenv("api_key")
17
+ if not YOUR_TOKEN_HERE:
18
+ raise EnvironmentError("未找到环境变量 'token',请设置后再运行程序。")
19
+
20
+ # Hook类,用于对消息添加前缀
21
+ class PrefixedMessageHook(Hook):
22
+ def __init__(self, prefix, senders=None):
23
+ """
24
+ 初始化Hook
25
+ :param prefix: 消息前缀
26
+ :param senders: 指定发送者列表
27
+ """
28
+ self.prefix = prefix
29
+ self.senders = senders or []
30
+
31
+ def before_agent(self, agent, messages, session_id):
32
+ """
33
+ 在代理处理消息前修改消息内容
34
+ :param agent: 当前代理
35
+ :param messages: 消息列表
36
+ :param session_id: 会话ID
37
+ """
38
+ for message in messages:
39
+ if message.sender in self.senders:
40
+ message.content = self.prefix + message.content
41
+
42
+ class AsyncBlogger:
43
+ """博客生成类,整合写作者和批评者。"""
44
+
45
+ def __init__(self, model_type, api_base, writer_prompt, critic_prompt, critic_prefix='', max_turn=2):
46
+ """
47
+ 初始化博客生成器
48
+ :param model_type: 模型类型
49
+ :param api_base: API 基地址
50
+ :param writer_prompt: 写作者提示词
51
+ :param critic_prompt: 批评者提示词
52
+ :param critic_prefix: 批评消息前缀
53
+ :param max_turn: 最大轮次
54
+ """
55
+ self.model_type = model_type
56
+ self.api_base = api_base
57
+ self.llm = GPTAPI(
58
+ model_type=model_type,
59
+ api_base=api_base,
60
+ key=YOUR_TOKEN_HERE,
61
+ max_new_tokens=4096,
62
+ )
63
+ self.plugins = [dict(type='lagent.actions.ArxivSearch')]
64
+ self.writer = Agent(
65
+ self.llm,
66
+ writer_prompt,
67
+ name='写作者',
68
+ output_format=dict(
69
+ type=PluginParser,
70
+ template=PLUGIN_CN,
71
+ prompt=get_plugin_prompt(self.plugins)
72
+ )
73
+ )
74
+ self.critic = Agent(
75
+ self.llm,
76
+ critic_prompt,
77
+ name='批评者',
78
+ hooks=[PrefixedMessageHook(critic_prefix, ['写作者'])]
79
+ )
80
+ self.max_turn = max_turn
81
+
82
+ async def forward(self, message: AgentMessage, update_placeholder):
83
+ """
84
+ 执行多阶段博客生成流程
85
+ :param message: 初始消息
86
+ :param update_placeholder: Streamlit占位符
87
+ :return: 最终优化的博客内容
88
+ """
89
+ step1_placeholder = update_placeholder.container()
90
+ step2_placeholder = update_placeholder.container()
91
+ step3_placeholder = update_placeholder.container()
92
+
93
+ # 第一步:生成初始内容
94
+ step1_placeholder.markdown("**Step 1: 生成初始内容...**")
95
+ message = self.writer(message)
96
+ if message.content:
97
+ step1_placeholder.markdown(f"**生成的初始内容**:\n\n{message.content}")
98
+ else:
99
+ step1_placeholder.markdown("**生成的初始内容为空,请检查生成逻辑。**")
100
+
101
+ # 第二步:批评者提供反馈
102
+ step2_placeholder.markdown("**Step 2: 批评者正在提供反馈和文献推荐...**")
103
+ message = self.critic(message)
104
+ if message.content:
105
+ # 解析批评者反馈
106
+ suggestions = re.search(r"1\. 批评建议:\n(.*?)2\. 推荐的关键词:", message.content, re.S)
107
+ keywords = re.search(r"2\. 推荐的关键词:\n- (.*)", message.content)
108
+ feedback = suggestions.group(1).strip() if suggestions else "未提供批评建议"
109
+ keywords = keywords.group(1).strip() if keywords else "未提供关键词"
110
+
111
+ # Arxiv 文献查询
112
+ arxiv_search = ArxivSearch()
113
+ arxiv_results = arxiv_search.get_arxiv_article_information(keywords)
114
+
115
+ # 显示批评内容和文献推荐
116
+ message.content = f"**批评建议**:\n{feedback}\n\n**推荐的文献**:\n{arxiv_results}"
117
+ step2_placeholder.markdown(f"**批评和文献推荐**:\n\n{message.content}")
118
+ else:
119
+ step2_placeholder.markdown("**批评内容为空,请检查批评逻辑。**")
120
+
121
+ # 第三步:写作者根据反馈优化内容
122
+ step3_placeholder.markdown("**Step 3: 根据反馈改进内容...**")
123
+ improvement_prompt = AgentMessage(
124
+ sender="critic",
125
+ content=(
126
+ f"根据以下批评建议和推荐文献对内容进行改进:\n\n"
127
+ f"批评建议:\n{feedback}\n\n"
128
+ f"推荐文献:\n{arxiv_results}\n\n"
129
+ f"请优化初始内容,使其更加清晰、丰富,并符合专业水准。"
130
+ ),
131
+ )
132
+ message = self.writer(improvement_prompt)
133
+ if message.content:
134
+ step3_placeholder.markdown(f"**最终优化的博客内容**:\n\n{message.content}")
135
+ else:
136
+ step3_placeholder.markdown("**最终优化的博客内容为空,请检查生成逻辑。**")
137
+
138
+ return message
139
+
140
+ def setup_sidebar():
141
+ """设置侧边栏,选择模型。"""
142
+ model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
143
+ api_base = st.sidebar.text_input(
144
+ 'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
145
+ )
146
+
147
+ return model_name, api_base
148
+
149
+ def main():
150
+ """
151
+ 主函数:构建Streamlit界面并处理用户交互
152
+ """
153
+ st.set_page_config(layout='wide', page_title='Lagent Web Demo', page_icon='🤖')
154
+ st.title("多代理博客优化助手")
155
+
156
+ model_type, api_base = setup_sidebar()
157
+ topic = st.text_input('输入一个话题:', 'Self-Supervised Learning')
158
+ generate_button = st.button('生成博客内容')
159
+
160
+ if (
161
+ 'blogger' not in st.session_state or
162
+ st.session_state['model_type'] != model_type or
163
+ st.session_state['api_base'] != api_base
164
+ ):
165
+ st.session_state['blogger'] = AsyncBlogger(
166
+ model_type=model_type,
167
+ api_base=api_base,
168
+ writer_prompt="你是一位优秀的AI内容写作者,请撰写一篇有吸引力且信息丰富的博客内容。",
169
+ critic_prompt="""
170
+ 作为一位严谨的批评者,请给出建设性的批评和改进建议,并基于相关主题使用已有的工具推荐一些参考文献,推荐的关键词应该是英语形式,简洁且切题。
171
+ 请按照以下格式提供反馈:
172
+ 1. 批评建议:
173
+ - (具体建议)
174
+ 2. 推荐的关键词:
175
+ - (关键词1, 关键词2, ...)
176
+ """,
177
+ critic_prefix="请批评以下内容,并提供改进建议:\n\n"
178
+ )
179
+ st.session_state['model_type'] = model_type
180
+ st.session_state['api_base'] = api_base
181
+
182
+ if generate_button:
183
+ update_placeholder = st.empty()
184
+
185
+ async def run_async_blogger():
186
+ message = AgentMessage(
187
+ sender='user',
188
+ content=f"请撰写一篇关于{topic}的博客文章,要求表达专业,生动有趣,并且易于理解。"
189
+ )
190
+ result = await st.session_state['blogger'].forward(message, update_placeholder)
191
+ return result
192
+
193
+ loop = asyncio.new_event_loop()
194
+ asyncio.set_event_loop(loop)
195
+ loop.run_until_complete(run_async_blogger())
196
+
197
+ if __name__ == '__main__':
198
+ main()