SDXS-cpu / app.py
lemonteaa's picture
Create app.py
e042129 verified
raw
history blame
2.3 kB
import gradio as gr
import os
from PIL import Image
import random
import torch
from diffusers import StableDiffusionPipeline, AutoencoderKL
def gen_seed():
random_data = os.urandom(3)
seed = int.from_bytes(random_data, byteorder="big")
return seed
repo = "IDKiro/sdxs-512-0.9"
weight_type = torch.float32 # or float16
# Load model.
pipe = StableDiffusionPipeline.from_pretrained(repo, torch_dtype=weight_type)
# use original VAE
# pipe.vae = AutoencoderKL.from_pretrained("IDKiro/sdxs-512-0.9/vae_large")
#pipe.to("cuda")
prompt = "portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour"
def sdxs_run(prompt, steps, guidance, seed):
# Ensure using 1 inference step and CFG set to 0.
image = pipe(
prompt,
num_inference_steps=steps,
guidance_scale=guidance,
generator=torch.Generator(device="cpu").manual_seed(seed)
).images[0]
return image
#image.save("output.png")
def update_seed(rand, seed):
if rand:
return gen_seed()
else:
return seed
desc = """# SDXS CPU Test Space
Just a quick test. Model is `sdxs-512-0.9` for txt2img.
"""
with gr.Blocks() as demo:
gr.Markdown(desc)
with gr.Group():
with gr.Row():
img = gr.Image(label='SDXS Generated Image')
with gr.Row():
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8, value="portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour")
with gr.Accordion("More options", open=False):
steps = gr.Slider(label="Number of steps", value=1, minimum=1, maximum=20, step=1)
guidance = gr.Slider(label="Guidance", value=0, minimum=0, maximum=2, step=0.1)
seed = gr.Slider(label="Seed", minimum=20, maximum=100000000, step=1, randomize=True)
rand = gr.Checkbox(label="Randomize Seed After Generation?", value=True)
with gr.Row():
submit = gr.Button(scale=1, variant='primary')
#clear = gr.ClearButton(components=[])
submit.click(fn=sdxs_run, inputs=[prompt, steps, guidance, seed], outputs=img).then(fn=update_seed, inputs=[rand, seed], outputs=seed)
demo.queue(max_size=20).launch()