Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,806 Bytes
1df74c6 d2b7e94 d5d0921 d2b7e94 da8d589 01e655b d2b7e94 01e655b d2b7e94 01e655b d2b7e94 01e655b d2b7e94 01e655b da8d589 01e655b da8d589 1df74c6 da8d589 01e655b 1df74c6 01e655b b44532e 1df74c6 01e655b da8d589 d5b3cd8 1df74c6 d5b3cd8 1df74c6 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 d5d0921 da8d589 01e655b da8d589 d5d0921 da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b d5b3cd8 01e655b da8d589 01e655b 1df74c6 d5d0921 1df74c6 d5d0921 1df74c6 da8d589 1df74c6 da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b da8d589 01e655b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import copy
import json
import logging
import re
from typing import List, Union
import numpy as np
from box import Box
from pydub import AudioSegment
from modules import generate_audio
from modules.api.utils import calc_spk_style
from modules.normalization import text_normalize
from modules.SentenceSplitter import SentenceSplitter
from modules.speaker import Speaker
from modules.ssml_parser.SSMLParser import SSMLBreak, SSMLContext, SSMLSegment
from modules.utils import rng
from modules.utils.audio import pitch_shift, time_stretch
logger = logging.getLogger(__name__)
def audio_data_to_segment(audio_data: np.ndarray, sr: int):
"""
optimize: https://github.com/lenML/ChatTTS-Forge/issues/57
"""
audio_data = (audio_data * 32767).astype(np.int16)
audio_segment = AudioSegment(
audio_data.tobytes(),
frame_rate=sr,
sample_width=audio_data.dtype.itemsize,
channels=1,
)
return audio_segment
def combine_audio_segments(audio_segments: list[AudioSegment]) -> AudioSegment:
combined_audio = AudioSegment.empty()
for segment in audio_segments:
combined_audio += segment
return combined_audio
def apply_prosody(
audio_segment: AudioSegment, rate: float, volume: float, pitch: float
) -> AudioSegment:
if rate != 1:
audio_segment = time_stretch(audio_segment, rate)
if volume != 0:
audio_segment += volume
if pitch != 0:
audio_segment = pitch_shift(audio_segment, pitch)
return audio_segment
def to_number(value, t, default=0):
try:
number = t(value)
return number
except (ValueError, TypeError) as e:
return default
class TTSAudioSegment(Box):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._type = kwargs.get("_type", "voice")
self.text = kwargs.get("text", "")
self.temperature = kwargs.get("temperature", 0.3)
self.top_P = kwargs.get("top_P", 0.5)
self.top_K = kwargs.get("top_K", 20)
self.spk = kwargs.get("spk", -1)
self.infer_seed = kwargs.get("infer_seed", -1)
self.prompt1 = kwargs.get("prompt1", "")
self.prompt2 = kwargs.get("prompt2", "")
self.prefix = kwargs.get("prefix", "")
class SynthesizeSegments:
def __init__(self, batch_size: int = 8, eos="", spliter_thr=100):
self.batch_size = batch_size
self.batch_default_spk_seed = rng.np_rng()
self.batch_default_infer_seed = rng.np_rng()
self.eos = eos
self.spliter_thr = spliter_thr
def segment_to_generate_params(
self, segment: Union[SSMLSegment, SSMLBreak]
) -> TTSAudioSegment:
if isinstance(segment, SSMLBreak):
return TTSAudioSegment(_type="break")
if segment.get("params", None) is not None:
params = segment.get("params")
text = segment.get("text", None) or segment.text or ""
return TTSAudioSegment(**params, text=text)
text = segment.get("text", None) or segment.text or ""
is_end = segment.get("is_end", False)
text = str(text).strip()
attrs = segment.attrs
spk = attrs.spk
style = attrs.style
ss_params = calc_spk_style(spk, style)
if "spk" in ss_params:
spk = ss_params["spk"]
seed = to_number(attrs.seed, int, ss_params.get("seed") or -1)
top_k = to_number(attrs.top_k, int, None)
top_p = to_number(attrs.top_p, float, None)
temp = to_number(attrs.temp, float, None)
prompt1 = attrs.prompt1 or ss_params.get("prompt1")
prompt2 = attrs.prompt2 or ss_params.get("prompt2")
prefix = attrs.prefix or ss_params.get("prefix")
disable_normalize = attrs.get("normalize", "") == "False"
seg = TTSAudioSegment(
_type="voice",
text=text,
temperature=temp if temp is not None else 0.3,
top_P=top_p if top_p is not None else 0.5,
top_K=top_k if top_k is not None else 20,
spk=spk if spk else -1,
infer_seed=seed if seed else -1,
prompt1=prompt1 if prompt1 else "",
prompt2=prompt2 if prompt2 else "",
prefix=prefix if prefix else "",
)
if not disable_normalize:
seg.text = text_normalize(text, is_end=is_end)
# NOTE 每个batch的默认seed保证前后一致即使是没设置spk的情况
if seg.spk == -1:
seg.spk = self.batch_default_spk_seed
if seg.infer_seed == -1:
seg.infer_seed = self.batch_default_infer_seed
return seg
def process_break_segments(
self,
src_segments: List[SSMLBreak],
bucket_segments: List[SSMLBreak],
audio_segments: List[AudioSegment],
):
for segment in bucket_segments:
index = src_segments.index(segment)
audio_segments[index] = AudioSegment.silent(
duration=int(segment.attrs.duration)
)
def process_voice_segments(
self,
src_segments: List[SSMLSegment],
bucket: List[SSMLSegment],
audio_segments: List[AudioSegment],
):
for i in range(0, len(bucket), self.batch_size):
batch = bucket[i : i + self.batch_size]
param_arr = [self.segment_to_generate_params(segment) for segment in batch]
def append_eos(text: str):
text = text.strip()
eos_arr = ["[uv_break]", "[v_break]", "[lbreak]", "[llbreak]"]
has_eos = False
for eos in eos_arr:
if eos in text:
has_eos = True
break
if not has_eos:
text += self.eos
return text
# 这里会添加 end_of_text 到 text 之后
texts = [append_eos(params.text) for params in param_arr]
params = param_arr[0]
audio_datas = generate_audio.generate_audio_batch(
texts=texts,
temperature=params.temperature,
top_P=params.top_P,
top_K=params.top_K,
spk=params.spk,
infer_seed=params.infer_seed,
prompt1=params.prompt1,
prompt2=params.prompt2,
prefix=params.prefix,
)
for idx, segment in enumerate(batch):
sr, audio_data = audio_datas[idx]
rate = float(segment.get("rate", "1.0"))
volume = float(segment.get("volume", "0"))
pitch = float(segment.get("pitch", "0"))
audio_segment = audio_data_to_segment(audio_data, sr)
audio_segment = apply_prosody(audio_segment, rate, volume, pitch)
# compare by Box object
original_index = src_segments.index(segment)
audio_segments[original_index] = audio_segment
def bucket_segments(
self, segments: List[Union[SSMLSegment, SSMLBreak]]
) -> List[List[Union[SSMLSegment, SSMLBreak]]]:
buckets = {"<break>": []}
for segment in segments:
if isinstance(segment, SSMLBreak):
buckets["<break>"].append(segment)
continue
params = self.segment_to_generate_params(segment)
if isinstance(params.spk, Speaker):
params.spk = str(params.spk.id)
key = json.dumps(
{k: v for k, v in params.items() if k != "text"}, sort_keys=True
)
if key not in buckets:
buckets[key] = []
buckets[key].append(segment)
return buckets
def split_segments(self, segments: List[Union[SSMLSegment, SSMLBreak]]):
"""
将 segments 中的 text 经过 spliter 处理成多个 segments
"""
spliter = SentenceSplitter(threshold=self.spliter_thr)
ret_segments: List[Union[SSMLSegment, SSMLBreak]] = []
for segment in segments:
if isinstance(segment, SSMLBreak):
ret_segments.append(segment)
continue
text = segment.text
if not text:
continue
sentences = spliter.parse(text)
for sentence in sentences:
seg = SSMLSegment(
text=sentence,
attrs=segment.attrs.copy(),
params=copy.copy(segment.params),
)
ret_segments.append(seg)
setattr(seg, "_idx", len(ret_segments) - 1)
def is_none_speak_segment(segment: SSMLSegment):
text = segment.text.strip()
regexp = r"\[[^\]]+?\]"
text = re.sub(regexp, "", text)
text = text.strip()
if not text:
return True
return False
# 将 none_speak 合并到前一个 speak segment
for i in range(1, len(ret_segments)):
if is_none_speak_segment(ret_segments[i]):
ret_segments[i - 1].text += ret_segments[i].text
ret_segments[i].text = ""
# 移除空的 segment
ret_segments = [seg for seg in ret_segments if seg.text.strip()]
return ret_segments
def synthesize_segments(
self, segments: List[Union[SSMLSegment, SSMLBreak]]
) -> List[AudioSegment]:
segments = self.split_segments(segments)
audio_segments = [None] * len(segments)
buckets = self.bucket_segments(segments)
break_segments = buckets.pop("<break>")
self.process_break_segments(segments, break_segments, audio_segments)
buckets = list(buckets.values())
for bucket in buckets:
self.process_voice_segments(segments, bucket, audio_segments)
return audio_segments
# 示例使用
if __name__ == "__main__":
ctx1 = SSMLContext()
ctx1.spk = 1
ctx1.seed = 42
ctx1.temp = 0.1
ctx2 = SSMLContext()
ctx2.spk = 2
ctx2.seed = 42
ctx2.temp = 0.1
ssml_segments = [
SSMLSegment(text="大🍌,一条大🍌,嘿,你的感觉真的很奇妙", attrs=ctx1.copy()),
SSMLBreak(duration_ms=1000),
SSMLSegment(text="大🍉,一个大🍉,嘿,你的感觉真的很奇妙", attrs=ctx1.copy()),
SSMLSegment(text="大🍊,一个大🍊,嘿,你的感觉真的很奇妙", attrs=ctx2.copy()),
]
synthesizer = SynthesizeSegments(batch_size=2)
audio_segments = synthesizer.synthesize_segments(ssml_segments)
print(audio_segments)
combined_audio = combine_audio_segments(audio_segments)
combined_audio.export("output.wav", format="wav")
|