Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,120 Bytes
627d3d7 d2b7e94 9d9fe0d 627d3d7 d2b7e94 f83b1b7 32b2aaa da8d589 627d3d7 da8d589 627d3d7 da8d589 627d3d7 da8d589 627d3d7 da8d589 f83b1b7 da8d589 9d9fe0d da8d589 9d9fe0d da8d589 9d9fe0d da8d589 627d3d7 da8d589 627d3d7 da8d589 f83b1b7 da8d589 627d3d7 bed01bd 627d3d7 da8d589 f83b1b7 d2b7e94 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 da8d589 f83b1b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gc
import logging
from pathlib import Path
from threading import Lock
from typing import Literal
import numpy as np
import torch
from modules.devices import devices
from modules.repos_static.resemble_enhance.enhancer.enhancer import Enhancer
from modules.repos_static.resemble_enhance.enhancer.hparams import HParams
from modules.repos_static.resemble_enhance.inference import inference
from modules.utils.constants import MODELS_DIR
logger = logging.getLogger(__name__)
resemble_enhance = None
lock = Lock()
class ResembleEnhance:
def __init__(self, device: torch.device, dtype=torch.float32):
self.device = device
self.dtype = dtype
self.enhancer: HParams = None
self.hparams: Enhancer = None
def load_model(self):
hparams = HParams.load(Path(MODELS_DIR) / "resemble-enhance")
enhancer = Enhancer(hparams)
state_dict = torch.load(
Path(MODELS_DIR) / "resemble-enhance" / "mp_rank_00_model_states.pt",
map_location="cpu",
)["module"]
enhancer.load_state_dict(state_dict)
enhancer.to(device=self.device, dtype=self.dtype).eval()
self.hparams = hparams
self.enhancer = enhancer
@torch.inference_mode()
def denoise(self, dwav, sr) -> tuple[torch.Tensor, int]:
assert self.enhancer is not None, "Model not loaded"
assert self.enhancer.denoiser is not None, "Denoiser not loaded"
enhancer = self.enhancer
return inference(
model=enhancer.denoiser,
dwav=dwav,
sr=sr,
device=self.devicem,
dtype=self.dtype,
)
@torch.inference_mode()
def enhance(
self,
dwav,
sr,
nfe=32,
solver: Literal["midpoint", "rk4", "euler"] = "midpoint",
lambd=0.5,
tau=0.5,
) -> tuple[torch.Tensor, int]:
assert 0 < nfe <= 128, f"nfe must be in (0, 128], got {nfe}"
assert solver in (
"midpoint",
"rk4",
"euler",
), f"solver must be in ('midpoint', 'rk4', 'euler'), got {solver}"
assert 0 <= lambd <= 1, f"lambd must be in [0, 1], got {lambd}"
assert 0 <= tau <= 1, f"tau must be in [0, 1], got {tau}"
assert self.enhancer is not None, "Model not loaded"
enhancer = self.enhancer
enhancer.configurate_(nfe=nfe, solver=solver, lambd=lambd, tau=tau)
return inference(
model=enhancer, dwav=dwav, sr=sr, device=self.device, dtype=self.dtype
)
def load_enhancer() -> ResembleEnhance:
global resemble_enhance
with lock:
if resemble_enhance is None:
logger.info("Loading ResembleEnhance model")
resemble_enhance = ResembleEnhance(
device=devices.get_device_for("enhancer"), dtype=devices.dtype
)
resemble_enhance.load_model()
logger.info("ResembleEnhance model loaded")
return resemble_enhance
def unload_enhancer():
global resemble_enhance
with lock:
if resemble_enhance is not None:
logger.info("Unloading ResembleEnhance model")
del resemble_enhance
resemble_enhance = None
devices.torch_gc()
gc.collect()
logger.info("ResembleEnhance model unloaded")
def reload_enhancer():
logger.info("Reloading ResembleEnhance model")
unload_enhancer()
load_enhancer()
logger.info("ResembleEnhance model reloaded")
def apply_audio_enhance_full(
audio_data: np.ndarray,
sr: int,
nfe=32,
solver: Literal["midpoint", "rk4", "euler"] = "midpoint",
lambd=0.5,
tau=0.5,
):
# FIXME: 这里可能改成 to(device) 会优化一点?
tensor = torch.from_numpy(audio_data).float().squeeze().cpu()
enhancer = load_enhancer()
tensor, sr = enhancer.enhance(
tensor, sr, tau=tau, nfe=nfe, solver=solver, lambd=lambd
)
audio_data = tensor.cpu().numpy()
return audio_data, int(sr)
def apply_audio_enhance(
audio_data: np.ndarray, sr: int, enable_denoise: bool, enable_enhance: bool
):
if not enable_denoise and not enable_enhance:
return audio_data, sr
# FIXME: 这里可能改成 to(device) 会优化一点?
tensor = torch.from_numpy(audio_data).float().squeeze().cpu()
enhancer = load_enhancer()
if enable_enhance or enable_denoise:
lambd = 0.9 if enable_denoise else 0.1
tensor, sr = enhancer.enhance(
tensor, sr, tau=0.5, nfe=64, solver="rk4", lambd=lambd
)
audio_data = tensor.cpu().numpy()
return audio_data, int(sr)
if __name__ == "__main__":
import gradio as gr
import torchaudio
device = torch.device("cuda")
# def enhance(file):
# print(file)
# ench = load_enhancer(device)
# dwav, sr = torchaudio.load(file)
# dwav = dwav.mean(dim=0).to(device)
# enhanced, e_sr = ench.enhance(dwav, sr)
# return e_sr, enhanced.cpu().numpy()
# # 随便一个示例
# gr.Interface(
# fn=enhance, inputs=[gr.Audio(type="filepath")], outputs=[gr.Audio()]
# ).launch()
# load_chat_tts()
# ench = load_enhancer(device)
# devices.torch_gc()
# wav, sr = torchaudio.load("test.wav")
# print(wav.shape, type(wav), sr, type(sr))
# # exit()
# wav = wav.squeeze(0).cuda()
# print(wav.device)
# denoised, d_sr = ench.denoise(wav, sr)
# denoised = denoised.unsqueeze(0)
# print(denoised.shape)
# torchaudio.save("denoised.wav", denoised.cpu(), d_sr)
# for solver in ("midpoint", "rk4", "euler"):
# for lambd in (0.1, 0.5, 0.9):
# for tau in (0.1, 0.5, 0.9):
# enhanced, e_sr = ench.enhance(
# wav, sr, solver=solver, lambd=lambd, tau=tau, nfe=128
# )
# enhanced = enhanced.unsqueeze(0)
# print(enhanced.shape)
# torchaudio.save(
# f"enhanced_{solver}_{lambd}_{tau}.wav", enhanced.cpu(), e_sr
# )
|