Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,483 Bytes
da8d589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import os
from typing import List
from resemble_enhance.enhancer.enhancer import Enhancer
from resemble_enhance.enhancer.hparams import HParams
from resemble_enhance.inference import inference
import torch
from modules.utils.constants import MODELS_DIR
from pathlib import Path
from threading import Lock
resemble_enhance = None
lock = Lock()
def load_enhancer(device: torch.device):
global resemble_enhance
with lock:
if resemble_enhance is None:
resemble_enhance = ResembleEnhance(device)
resemble_enhance.load_model()
return resemble_enhance
class ResembleEnhance:
hparams: HParams
enhancer: Enhancer
def __init__(self, device: torch.device):
self.device = device
self.enhancer = None
self.hparams = None
def load_model(self):
hparams = HParams.load(Path(MODELS_DIR) / "resemble-enhance")
enhancer = Enhancer(hparams)
state_dict = torch.load(
Path(MODELS_DIR) / "resemble-enhance" / "mp_rank_00_model_states.pt",
map_location="cpu",
)["module"]
enhancer.load_state_dict(state_dict)
enhancer.eval()
enhancer.to(self.device)
enhancer.denoiser.to(self.device)
self.hparams = hparams
self.enhancer = enhancer
@torch.inference_mode()
def denoise(self, dwav, sr, device) -> tuple[torch.Tensor, int]:
assert self.enhancer is not None, "Model not loaded"
assert self.enhancer.denoiser is not None, "Denoiser not loaded"
enhancer = self.enhancer
return inference(model=enhancer.denoiser, dwav=dwav, sr=sr, device=device)
@torch.inference_mode()
def enhance(
self,
dwav,
sr,
device,
nfe=32,
solver="midpoint",
lambd=0.5,
tau=0.5,
) -> tuple[torch.Tensor, int]:
assert 0 < nfe <= 128, f"nfe must be in (0, 128], got {nfe}"
assert solver in (
"midpoint",
"rk4",
"euler",
), f"solver must be in ('midpoint', 'rk4', 'euler'), got {solver}"
assert 0 <= lambd <= 1, f"lambd must be in [0, 1], got {lambd}"
assert 0 <= tau <= 1, f"tau must be in [0, 1], got {tau}"
assert self.enhancer is not None, "Model not loaded"
enhancer = self.enhancer
enhancer.configurate_(nfe=nfe, solver=solver, lambd=lambd, tau=tau)
return inference(model=enhancer, dwav=dwav, sr=sr, device=device)
if __name__ == "__main__":
import torchaudio
from modules.models import load_chat_tts
load_chat_tts()
device = torch.device("cuda")
ench = ResembleEnhance(device)
ench.load_model()
wav, sr = torchaudio.load("test.wav")
print(wav.shape, type(wav), sr, type(sr))
exit()
wav = wav.squeeze(0).cuda()
print(wav.device)
denoised, d_sr = ench.denoise(wav.cpu(), sr, device)
denoised = denoised.unsqueeze(0)
print(denoised.shape)
torchaudio.save("denoised.wav", denoised, d_sr)
for solver in ("midpoint", "rk4", "euler"):
for lambd in (0.1, 0.5, 0.9):
for tau in (0.1, 0.5, 0.9):
enhanced, e_sr = ench.enhance(
wav.cpu(), sr, device, solver=solver, lambd=lambd, tau=tau, nfe=128
)
enhanced = enhanced.unsqueeze(0)
print(enhanced.shape)
torchaudio.save(f"enhanced_{solver}_{lambd}_{tau}.wav", enhanced, e_sr)
|