Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import logging | |
from pathlib import Path | |
from threading import Lock | |
from typing import Literal | |
import numpy as np | |
import torch | |
from modules.devices import devices | |
from modules.repos_static.resemble_enhance.enhancer.enhancer import Enhancer | |
from modules.repos_static.resemble_enhance.enhancer.hparams import HParams | |
from modules.repos_static.resemble_enhance.inference import inference | |
from modules.utils.constants import MODELS_DIR | |
logger = logging.getLogger(__name__) | |
resemble_enhance = None | |
lock = Lock() | |
class ResembleEnhance: | |
def __init__(self, device: torch.device, dtype=torch.float32): | |
self.device = device | |
self.dtype = dtype | |
self.enhancer: HParams = None | |
self.hparams: Enhancer = None | |
def load_model(self): | |
hparams = HParams.load(Path(MODELS_DIR) / "resemble-enhance") | |
enhancer = Enhancer(hparams) | |
state_dict = torch.load( | |
Path(MODELS_DIR) / "resemble-enhance" / "mp_rank_00_model_states.pt", | |
map_location="cpu", | |
)["module"] | |
enhancer.load_state_dict(state_dict) | |
enhancer.to(device=self.device, dtype=self.dtype).eval() | |
self.hparams = hparams | |
self.enhancer = enhancer | |
def denoise(self, dwav, sr) -> tuple[torch.Tensor, int]: | |
assert self.enhancer is not None, "Model not loaded" | |
assert self.enhancer.denoiser is not None, "Denoiser not loaded" | |
enhancer = self.enhancer | |
return inference( | |
model=enhancer.denoiser, | |
dwav=dwav, | |
sr=sr, | |
device=self.devicem, | |
dtype=self.dtype, | |
) | |
def enhance( | |
self, | |
dwav, | |
sr, | |
nfe=32, | |
solver: Literal["midpoint", "rk4", "euler"] = "midpoint", | |
lambd=0.5, | |
tau=0.5, | |
) -> tuple[torch.Tensor, int]: | |
assert 0 < nfe <= 128, f"nfe must be in (0, 128], got {nfe}" | |
assert solver in ( | |
"midpoint", | |
"rk4", | |
"euler", | |
), f"solver must be in ('midpoint', 'rk4', 'euler'), got {solver}" | |
assert 0 <= lambd <= 1, f"lambd must be in [0, 1], got {lambd}" | |
assert 0 <= tau <= 1, f"tau must be in [0, 1], got {tau}" | |
assert self.enhancer is not None, "Model not loaded" | |
enhancer = self.enhancer | |
enhancer.configurate_(nfe=nfe, solver=solver, lambd=lambd, tau=tau) | |
return inference( | |
model=enhancer, dwav=dwav, sr=sr, device=self.device, dtype=self.dtype | |
) | |
def load_enhancer() -> ResembleEnhance: | |
global resemble_enhance | |
with lock: | |
if resemble_enhance is None: | |
logger.info("Loading ResembleEnhance model") | |
resemble_enhance = ResembleEnhance( | |
device=devices.get_device_for("enhancer"), dtype=devices.dtype | |
) | |
resemble_enhance.load_model() | |
logger.info("ResembleEnhance model loaded") | |
return resemble_enhance | |
def unload_enhancer(): | |
global resemble_enhance | |
with lock: | |
if resemble_enhance is not None: | |
logger.info("Unloading ResembleEnhance model") | |
del resemble_enhance | |
resemble_enhance = None | |
devices.torch_gc() | |
gc.collect() | |
logger.info("ResembleEnhance model unloaded") | |
def reload_enhancer(): | |
logger.info("Reloading ResembleEnhance model") | |
unload_enhancer() | |
load_enhancer() | |
logger.info("ResembleEnhance model reloaded") | |
def apply_audio_enhance_full( | |
audio_data: np.ndarray, | |
sr: int, | |
nfe=32, | |
solver: Literal["midpoint", "rk4", "euler"] = "midpoint", | |
lambd=0.5, | |
tau=0.5, | |
): | |
# FIXME: 这里可能改成 to(device) 会优化一点? | |
tensor = torch.from_numpy(audio_data).float().squeeze().cpu() | |
enhancer = load_enhancer() | |
tensor, sr = enhancer.enhance( | |
tensor, sr, tau=tau, nfe=nfe, solver=solver, lambd=lambd | |
) | |
audio_data = tensor.cpu().numpy() | |
return audio_data, int(sr) | |
def apply_audio_enhance( | |
audio_data: np.ndarray, sr: int, enable_denoise: bool, enable_enhance: bool | |
): | |
if not enable_denoise and not enable_enhance: | |
return audio_data, sr | |
# FIXME: 这里可能改成 to(device) 会优化一点? | |
tensor = torch.from_numpy(audio_data).float().squeeze().cpu() | |
enhancer = load_enhancer() | |
if enable_enhance or enable_denoise: | |
lambd = 0.9 if enable_denoise else 0.1 | |
tensor, sr = enhancer.enhance( | |
tensor, sr, tau=0.5, nfe=64, solver="rk4", lambd=lambd | |
) | |
audio_data = tensor.cpu().numpy() | |
return audio_data, int(sr) | |
if __name__ == "__main__": | |
import gradio as gr | |
import torchaudio | |
device = torch.device("cuda") | |
# def enhance(file): | |
# print(file) | |
# ench = load_enhancer(device) | |
# dwav, sr = torchaudio.load(file) | |
# dwav = dwav.mean(dim=0).to(device) | |
# enhanced, e_sr = ench.enhance(dwav, sr) | |
# return e_sr, enhanced.cpu().numpy() | |
# # 随便一个示例 | |
# gr.Interface( | |
# fn=enhance, inputs=[gr.Audio(type="filepath")], outputs=[gr.Audio()] | |
# ).launch() | |
# load_chat_tts() | |
# ench = load_enhancer(device) | |
# devices.torch_gc() | |
# wav, sr = torchaudio.load("test.wav") | |
# print(wav.shape, type(wav), sr, type(sr)) | |
# # exit() | |
# wav = wav.squeeze(0).cuda() | |
# print(wav.device) | |
# denoised, d_sr = ench.denoise(wav, sr) | |
# denoised = denoised.unsqueeze(0) | |
# print(denoised.shape) | |
# torchaudio.save("denoised.wav", denoised.cpu(), d_sr) | |
# for solver in ("midpoint", "rk4", "euler"): | |
# for lambd in (0.1, 0.5, 0.9): | |
# for tau in (0.1, 0.5, 0.9): | |
# enhanced, e_sr = ench.enhance( | |
# wav, sr, solver=solver, lambd=lambd, tau=tau, nfe=128 | |
# ) | |
# enhanced = enhanced.unsqueeze(0) | |
# print(enhanced.shape) | |
# torchaudio.save( | |
# f"enhanced_{solver}_{lambd}_{tau}.wav", enhanced.cpu(), e_sr | |
# ) | |