Spaces:
Running
on
Zero
Running
on
Zero
import base64 | |
from fastapi import HTTPException | |
import io | |
import soundfile as sf | |
from pydantic import BaseModel | |
from modules.api.Api import APIManager | |
from modules.utils.audio import apply_prosody_to_audio_data | |
from modules.normalization import text_normalize | |
from modules import generate_audio as generate | |
from modules.speaker import speaker_mgr | |
from modules.ssml import parse_ssml | |
from modules.SynthesizeSegments import ( | |
SynthesizeSegments, | |
combine_audio_segments, | |
) | |
from modules.api import utils as api_utils | |
class SynthesisInput(BaseModel): | |
text: str = "" | |
ssml: str = "" | |
class VoiceSelectionParams(BaseModel): | |
languageCode: str = "ZH-CN" | |
name: str = "female2" | |
style: str = "" | |
temperature: float = 0.3 | |
topP: float = 0.7 | |
topK: int = 20 | |
seed: int = 42 | |
class AudioConfig(BaseModel): | |
audioEncoding: api_utils.AudioFormat = "mp3" | |
speakingRate: float = 1 | |
pitch: float = 0 | |
volumeGainDb: float = 0 | |
sampleRateHertz: int | |
batchSize: int = 1 | |
spliterThreshold: int = 100 | |
class GoogleTextSynthesizeRequest(BaseModel): | |
input: SynthesisInput | |
voice: VoiceSelectionParams | |
audioConfig: dict | |
class GoogleTextSynthesizeResponse(BaseModel): | |
audioContent: str | |
async def google_text_synthesize(request: GoogleTextSynthesizeRequest): | |
input = request.input | |
voice = request.voice | |
audioConfig = request.audioConfig | |
# 提取参数 | |
language_code = voice.languageCode | |
voice_name = voice.name | |
infer_seed = voice.seed or 42 | |
audio_format = audioConfig.get("audioEncoding", "mp3") | |
speaking_rate = audioConfig.get("speakingRate", 1) | |
pitch = audioConfig.get("pitch", 0) | |
volume_gain_db = audioConfig.get("volumeGainDb", 0) | |
batch_size = audioConfig.get("batchSize", 1) | |
# TODO spliter_threshold | |
spliter_threshold = audioConfig.get("spliterThreshold", 100) | |
# TODO sample_rate | |
sample_rate_hertz = audioConfig.get("sampleRateHertz", 24000) | |
params = api_utils.calc_spk_style(spk=voice.name, style=voice.style) | |
# TODO maybe need to change the sample rate | |
sample_rate = 24000 | |
# TODO 使用 speaker | |
spk = speaker_mgr.get_speaker(voice_name) | |
if spk is None: | |
raise HTTPException( | |
status_code=400, detail="The specified voice name is not supported." | |
) | |
if audio_format != "mp3" and audio_format != "wav": | |
raise HTTPException( | |
status_code=400, detail="Invalid audio encoding format specified." | |
) | |
try: | |
if input.text: | |
# 处理文本合成逻辑 | |
text = text_normalize(input.text, is_end=True) | |
sample_rate, audio_data = generate.generate_audio( | |
text, | |
temperature=( | |
voice.temperature | |
if voice.temperature | |
else params.get("temperature", 0.3) | |
), | |
top_P=voice.topP if voice.topP else params.get("top_p", 0.7), | |
top_K=voice.topK if voice.topK else params.get("top_k", 20), | |
spk=params.get("spk", -1), | |
infer_seed=infer_seed, | |
prompt1=params.get("prompt1", ""), | |
prompt2=params.get("prompt2", ""), | |
prefix=params.get("prefix", ""), | |
) | |
elif input.ssml: | |
# 处理SSML合成逻辑 | |
segments = parse_ssml(input.ssml) | |
for seg in segments: | |
seg["text"] = text_normalize(seg["text"], is_end=True) | |
if len(segments) == 0: | |
raise HTTPException( | |
status_code=400, detail="The SSML text is empty or parsing failed." | |
) | |
synthesize = SynthesizeSegments(batch_size=batch_size) | |
audio_segments = synthesize.synthesize_segments(segments) | |
combined_audio = combine_audio_segments(audio_segments) | |
buffer = io.BytesIO() | |
combined_audio.export(buffer, format="wav") | |
buffer.seek(0) | |
audio_data = buffer.read() | |
else: | |
raise HTTPException( | |
status_code=400, detail="Either text or SSML input must be provided." | |
) | |
audio_data = apply_prosody_to_audio_data( | |
audio_data, | |
rate=speaking_rate, | |
pitch=pitch, | |
volume=volume_gain_db, | |
sr=sample_rate, | |
) | |
buffer = io.BytesIO() | |
sf.write(buffer, audio_data, sample_rate, format="wav") | |
buffer.seek(0) | |
if audio_format == "mp3": | |
buffer = api_utils.wav_to_mp3(buffer) | |
base64_encoded = base64.b64encode(buffer.read()) | |
base64_string = base64_encoded.decode("utf-8") | |
return { | |
"audioContent": f"data:audio/{audio_format.lower()};base64,{base64_string}" | |
} | |
except Exception as e: | |
import logging | |
logging.exception(e) | |
raise HTTPException(status_code=500, detail=str(e)) | |
def setup(app: APIManager): | |
app.post( | |
"/v1/text:synthesize", | |
response_model=GoogleTextSynthesizeResponse, | |
description=""" | |
google api document: <br/> | |
[https://cloud.google.com/text-to-speech/docs/reference/rest/v1/text/synthesize](https://cloud.google.com/text-to-speech/docs/reference/rest/v1/text/synthesize) | |
- 多个属性在本系统中无用仅仅是为了兼容google api | |
- voice 中的 topP, topK, temperature 为本系统中的参数 | |
- voice.name 即 speaker name (或者speaker seed) | |
- voice.seed 为 infer seed (可在webui中测试具体作用) | |
- 编码格式影响的是 audioContent 的二进制格式,所以所有format都是返回带有base64数据的json | |
""", | |
)(google_text_synthesize) | |