File size: 4,292 Bytes
67d263e
 
def3395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67d263e
 
 
 
 
def3395
 
 
 
 
67d263e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# demo source from: https://github.com/MarcoForte/FBA_Matting

import cv2
import gradio as gr
import numpy as np
import torch
from huggingface_hub import hf_hub_download

from networks.models import build_model
from networks.transforms import trimap_transform, normalise_image

REPO_ID = "leonelhs/FBA-Matting"

weights = hf_hub_download(repo_id=REPO_ID, filename="FBA.pth")
model = build_model(weights)
model.eval().cpu()


def np_to_torch(x, permute=True):
    if permute:
        return torch.from_numpy(x).permute(2, 0, 1)[None, :, :, :].float().cpu()
    else:
        return torch.from_numpy(x)[None, :, :, :].float().cpu()


def scale_input(x: np.ndarray, scale: float, scale_type) -> np.ndarray:
    ''' Scales inputs to multiple of 8. '''
    h, w = x.shape[:2]
    h1 = int(np.ceil(scale * h / 8) * 8)
    w1 = int(np.ceil(scale * w / 8) * 8)
    x_scale = cv2.resize(x, (w1, h1), interpolation=scale_type)
    return x_scale


def inference(image_np: np.ndarray, trimap_np: np.ndarray) -> [np.ndarray]:
    ''' Predict alpha, foreground and background.
        Parameters:
        image_np -- the image in rgb format between 0 and 1. Dimensions: (h, w, 3)
        trimap_np -- two channel trimap, first background then foreground. Dimensions: (h, w, 2)
        Returns:
        fg: foreground image in rgb format between 0 and 1. Dimensions: (h, w, 3)
        bg: background image in rgb format between 0 and 1. Dimensions: (h, w, 3)
        alpha: alpha matte image between 0 and 1. Dimensions: (h, w)
    '''
    h, w = trimap_np.shape[:2]
    image_scale_np = scale_input(image_np, 1.0, cv2.INTER_LANCZOS4)
    trimap_scale_np = scale_input(trimap_np, 1.0, cv2.INTER_LANCZOS4)

    with torch.no_grad():
        image_torch = np_to_torch(image_scale_np)
        trimap_torch = np_to_torch(trimap_scale_np)

        trimap_transformed_torch = np_to_torch(
            trimap_transform(trimap_scale_np), permute=False)
        image_transformed_torch = normalise_image(
            image_torch.clone())

        output = model(
            image_torch,
            trimap_torch,
            image_transformed_torch,
            trimap_transformed_torch)
        output = cv2.resize(
            output[0].cpu().numpy().transpose(
                (1, 2, 0)), (w, h), cv2.INTER_LANCZOS4)

    alpha = output[:, :, 0]
    fg = output[:, :, 1:4]
    bg = output[:, :, 4:7]

    alpha[trimap_np[:, :, 0] == 1] = 0
    alpha[trimap_np[:, :, 1] == 1] = 1
    fg[alpha == 1] = image_np[alpha == 1]
    bg[alpha == 0] = image_np[alpha == 0]

    return fg, bg, alpha


def read_image(name):
    return (cv2.imread(name) / 255.0)[:, :, ::-1]


def read_trimap(name):
    trimap_im = cv2.imread(name, 0) / 255.0
    h, w = trimap_im.shape
    trimap_np = np.zeros((h, w, 2))
    trimap_np[trimap_im == 1, 1] = 1
    trimap_np[trimap_im == 0, 0] = 1
    return trimap_np


def predict(image, trimap):
    image_np = read_image(image)
    trimap_np = read_trimap(trimap)
    return inference(image_np, trimap_np)


footer = r"""
<center>
<b>
Demo for <a href='https://github.com/MarcoForte/FBA_Matting'>FBA Matting</a>
</b>
</center>
"""

with gr.Blocks(title="FBA Matting") as app:
    gr.HTML("<center><h1>FBA Matting</h1></center>")
    gr.HTML("<center><h3>Foreground, Background, Alpha Matting Generator.</h3></center>")
    with gr.Row().style(equal_height=False):
        with gr.Column():
            input_img = gr.Image(type="filepath", label="Input image")
            input_trimap = gr.Image(type="filepath", label="Trimap image")
            run_btn = gr.Button(variant="primary")
        with gr.Column():
            fg = gr.Image(type="numpy", label="Foreground")
            bg = gr.Image(type="numpy", label="Background")
            alpha = gr.Image(type="numpy", label="Alpha")

    run_btn.click(predict, [input_img, input_trimap], [fg, bg, alpha])

    with gr.Row():
        blobs = [[
            f"./images/{x:02d}.png",
            f"./trimaps/{x:02d}.png"] for x in range(1, 7)]
        examples = gr.Dataset(components=[input_img, input_trimap], samples=blobs)
        examples.click(lambda x: (x[0], x[1]), [examples], [input_img, input_trimap])

    with gr.Row():
        gr.HTML(footer)

app.launch(share=False, debug=True, enable_queue=True, show_error=True)