Spaces:
Building
Building
File size: 1,070 Bytes
def3395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import torch.nn as nn
from torch.nn import functional as F
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True, eps=1e-5):
super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
self.out_channels = out_channels
self.eps = eps
def normalize_weight(self):
weight = F.batch_norm(
self.weight.view(1, self.out_channels, -1), None, None,
training=True, momentum=0., eps=self.eps).reshape_as(self.weight)
self.weight.data = weight
def forward(self, x):
if self.training:
self.normalize_weight()
return F.conv2d(x, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
def train(self, mode: bool = True):
super().train(mode=mode)
self.normalize_weight()
def norm(dim):
return nn.GroupNorm(32, dim)
|