Spaces:
Running
Running
from typing import Any, Dict | |
from functools import lru_cache | |
import threading | |
import cv2 | |
import numpy | |
import onnxruntime | |
from tqdm import tqdm | |
import facefusion.globals | |
from facefusion import wording | |
from facefusion.typing import Frame, ModelValue | |
from facefusion.vision import get_video_frame, count_video_frame_total, read_image, detect_fps | |
from facefusion.utilities import resolve_relative_path, conditional_download | |
CONTENT_ANALYSER = None | |
THREAD_LOCK : threading.Lock = threading.Lock() | |
MODELS : Dict[str, ModelValue] =\ | |
{ | |
'open_nsfw': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/open_nsfw.onnx', | |
'path': resolve_relative_path('../.assets/models/open_nsfw.onnx') | |
} | |
} | |
MAX_PROBABILITY = 1 | |
MAX_RATE = 5 | |
STREAM_COUNTER = 0 | |
def get_content_analyser() -> Any: | |
global CONTENT_ANALYSER | |
with THREAD_LOCK: | |
if CONTENT_ANALYSER is None: | |
model_path = MODELS.get('open_nsfw').get('path') | |
CONTENT_ANALYSER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers) | |
return CONTENT_ANALYSER | |
def clear_content_analyser() -> None: | |
global CONTENT_ANALYSER | |
CONTENT_ANALYSER = None | |
def pre_check() -> bool: | |
if not facefusion.globals.skip_download: | |
download_directory_path = resolve_relative_path('../.assets/models') | |
model_url = MODELS.get('open_nsfw').get('url') | |
conditional_download(download_directory_path, [ model_url ]) | |
return True | |
def analyse_stream(frame : Frame, fps : float) -> bool: | |
global STREAM_COUNTER | |
STREAM_COUNTER = STREAM_COUNTER + 1 | |
if STREAM_COUNTER % int(fps) == 0: | |
return analyse_frame(frame) | |
return False | |
def prepare_frame(frame : Frame) -> Frame: | |
frame = cv2.resize(frame, (224, 224)).astype(numpy.float32) | |
frame -= numpy.array([ 104, 117, 123 ]).astype(numpy.float32) | |
frame = numpy.expand_dims(frame, axis = 0) | |
return frame | |
def analyse_frame(frame : Frame) -> bool: | |
content_analyser = get_content_analyser() | |
frame = prepare_frame(frame) | |
probability = content_analyser.run(None, | |
{ | |
'input:0': frame | |
})[0][0][1] | |
return probability > MAX_PROBABILITY | |
def analyse_image(image_path : str) -> bool: | |
frame = read_image(image_path) | |
return analyse_frame(frame) | |
def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool: | |
video_frame_total = count_video_frame_total(video_path) | |
fps = detect_fps(video_path) | |
frame_range = range(start_frame or 0, end_frame or video_frame_total) | |
rate = 0.0 | |
counter = 0 | |
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =') as progress: | |
for frame_number in frame_range: | |
if frame_number % int(fps) == 0: | |
frame = get_video_frame(video_path, frame_number) | |
if analyse_frame(frame): | |
counter += 1 | |
rate = counter * int(fps) / len(frame_range) * 100 | |
progress.update() | |
progress.set_postfix(rate = rate) | |
return rate > MAX_RATE | |