File size: 2,653 Bytes
e49a8d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os

import gradio as gr
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from huggingface_hub import hf_hub_download
from realesrgan.utils import RealESRGANer

REALESRGAN_REPO_ID = 'leonelhs/realesrgan'
GFPGAN_REPO_ID = 'leonelhs/gfpgan'

os.system("pip freeze")

# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = hf_hub_download(repo_id=REALESRGAN_REPO_ID, filename='realesr-general-x4v3.pth')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)


def download_model(file):
    return hf_hub_download(repo_id=GFPGAN_REPO_ID, filename=file)


def predict(image, version, scale):
    scale = int(scale)
    face_enhancer = None

    if version == 'v1.2':
        path = download_model('GFPGANv1.2.pth')
        face_enhancer = GFPGANer(
            model_path=path, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
    elif version == 'v1.3':
        path = download_model('GFPGANv1.3.pth')
        face_enhancer = GFPGANer(
            model_path=path, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
    elif version == 'v1.4':
        path = download_model('GFPGANv1.4.pth')
        face_enhancer = GFPGANer(
            model_path=path, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
    elif version == 'RestoreFormer':
        path = download_model('RestoreFormer.pth')
        face_enhancer = GFPGANer(
            model_path=path, upscale=scale, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)

    _, _, output = face_enhancer.enhance(image, has_aligned=False, only_center_face=False, paste_back=True)

    return output


title = "GFPGAN"
description = r"""
<b>Practical Face Restoration Algorithm</b>
"""
article = r"""
<center><span>[email protected] or [email protected]</span></center>
</br>
<center><a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo ⭐ </a> are welcome</center>
"""

demo = gr.Interface(
    predict, [
        gr.Image(type="numpy", label="Input"),
        gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
        gr.Dropdown(["1", "2", "3", "4"], value="2", label="Rescaling factor")
    ], [
        gr.Image(type="numpy", label="Output", interactive=False)
    ],
    title=title,
    description=description,
    article=article)

demo.queue().launch()