Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import os | |
import zipfile | |
from PIL import Image, ImageOps | |
from datetime import datetime | |
import hashlib | |
def procesar_video(video): | |
try: | |
if isinstance(video, dict): | |
original_name = video.get("name", "video") | |
video_path = video.get("file", video.get("data")) | |
else: | |
original_name = os.path.basename(video) | |
video_path = video | |
allowed_extensions = ('.mp4', '.avi', '.mov', '.mkv') | |
if not original_name.lower().endswith(allowed_extensions): | |
raise gr.Error("Solo se permiten archivos de video (mp4, avi, mov, mkv)") | |
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S') | |
temp_dir = f"temp_{datetime.now().strftime('%Y%m%d%H%M%S')}" | |
os.makedirs(temp_dir, exist_ok=True) | |
# Extracción de todos los fotogramas | |
cap = cv2.VideoCapture(video_path) | |
frame_count = 0 | |
frame_paths = [] | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
img = Image.fromarray(frame_rgb) | |
img_path = os.path.join(temp_dir, f"frame_{frame_count:04d}.jpg") | |
img.save(img_path) | |
frame_paths.append(img_path) | |
frame_count += 1 | |
cap.release() | |
if frame_count == 0: | |
raise gr.Error("No se pudieron extraer fotogramas del video") | |
# Selección estratégica de 4 fotogramas equidistantes | |
n_seleccion = 4 | |
step = max(1, frame_count // (n_seleccion + 1)) | |
selected_indices = [step * (i+1) for i in range(n_seleccion)] | |
selected_frames = [frame_paths[min(i, len(frame_paths)-1)] for i in selected_indices] | |
# Creación de collage profesional | |
images = [] | |
for img_path in selected_frames: | |
img = Image.open(img_path) | |
bordered_img = ImageOps.expand(img, border=2, fill='white') # Borde blanco | |
images.append(bordered_img) | |
# Configuración del diseño | |
img_w, img_h = images[0].size | |
margin = 30 | |
border_size = 20 | |
shadow_offset = 5 | |
collage_width = (img_w * 2) + margin + (border_size * 2) | |
collage_height = (img_h * 2) + margin + (border_size * 2) | |
collage = Image.new('RGB', | |
(collage_width, collage_height), | |
(230, 230, 230)) # Fondo gris claro | |
# Posiciones con efecto de profundidad | |
positions = [ | |
(border_size, border_size), | |
(border_size + img_w + margin, border_size), | |
(border_size, border_size + img_h + margin), | |
(border_size + img_w + margin, border_size + img_h + margin) | |
] | |
# Pegar imágenes con sombra | |
for i, img in enumerate(images): | |
# Sombra | |
shadow = Image.new('RGBA', (img_w + shadow_offset, img_h + shadow_offset), (0,0,0,50)) | |
collage.paste(shadow, (positions[i][0]+shadow_offset, positions[i][1]+shadow_offset), shadow) | |
# Imagen principal | |
collage.paste(img, positions[i]) | |
collage_path = os.path.join(temp_dir, "collage_forense.jpg") | |
collage.save(collage_path, quality=95, dpi=(300, 300)) | |
# Generación del ZIP con cadena de custodia | |
base_name = os.path.splitext(original_name)[0] | |
zip_filename = f"{base_name}_Fotogramas.zip" | |
final_zip_path = os.path.join(temp_dir, zip_filename) | |
with zipfile.ZipFile(final_zip_path, mode="w") as zipf: | |
# Añadir todos los frames | |
for img_path in frame_paths: | |
zipf.write(img_path, os.path.basename(img_path)) | |
# Archivo TXT con formato profesional | |
with open(video_path, "rb") as f: | |
video_hash = hashlib.md5(f.read()).hexdigest() | |
chain_content = ( | |
"=== CADENA DE CUSTODIA DIGITAL ===\r\n\r\n" | |
f"• Archivo original: {original_name}\r\n" | |
f"• Fecha de procesamiento: {timestamp}\r\n" | |
f"• Fotogramas totales: {frame_count}\r\n" | |
f"• Hash MD5 video: {video_hash}\r\n" | |
f"• Fotogramas muestra: {', '.join([f'#{i+1}' for i in selected_indices])}\r\n\r\n" | |
"Este documento certifica la integridad del proceso de extracción.\n" | |
"Sistema Certificado por Peritos Forenses Digitales de Guatemala. \n" | |
"www.forensedigital.gt" | |
) | |
zipf.writestr("00_CADENA_CUSTODIA.txt", chain_content) | |
return collage_path, final_zip_path, temp_dir | |
except Exception as e: | |
raise gr.Error(f"Error en procesamiento: {str(e)}") | |
def limpiar_cache(temp_dir): | |
if temp_dir and os.path.exists(temp_dir): | |
for file in os.listdir(temp_dir): | |
os.remove(os.path.join(temp_dir, file)) | |
os.rmdir(temp_dir) | |
with gr.Blocks(title="Extractior Forense de Fotogramas") as demo: | |
gr.Markdown("# 📷 Extractor Forense de Fotogramas de Videos") | |
gr.Markdown("**Herramienta certificada para extracción forense de fotogramas de videos** (No se guarda ninguna información") | |
gr.Markdown("Desarrollado por José R. Leonett para el Grupo de Peritos Forenses Digitales de Guatemala - [www.forensedigital.gt](https://www.forensedigital.gt)") | |
with gr.Row(): | |
with gr.Column(): | |
video_input = gr.Video( | |
label="CARGAR VIDEO", | |
sources=["upload"], | |
format="mp4", | |
interactive=True | |
) | |
procesar_btn = gr.Button("🔍 INICIAR ANÁLISIS", interactive=False) | |
with gr.Column(): | |
# gr.Markdown("## Resultados:") | |
gallery_output = gr.Image(label="COLLAGE DE REFERENCIA", height=400) | |
download_file = gr.File(label="DESCARGAR EVIDENCIAS", visible=True) | |
temp_dir_state = gr.State() | |
zip_path_state = gr.State() | |
def habilitar_procesado(video): | |
return gr.update(interactive=True) if video else gr.update(interactive=False) | |
video_input.change( | |
fn=habilitar_procesado, | |
inputs=video_input, | |
outputs=procesar_btn, | |
queue=False | |
) | |
def procesar_y_mostrar(video): | |
if temp_dir_state.value: | |
limpiar_cache(temp_dir_state.value) | |
collage, zip_path, temp_dir = procesar_video(video) | |
return collage, zip_path, temp_dir, zip_path | |
procesar_btn.click( | |
fn=procesar_y_mostrar, | |
inputs=video_input, | |
outputs=[gallery_output, download_file, temp_dir_state, zip_path_state] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |